Cargando…

Simultaneous Measurement of Patellofemoral Joint Kinematics and Contact Mechanics in Intact Knees: A Cadaveric Study

OBJECTIVE: Patellofemoral kinematics and contact mechanics are important measurements for the assessment of patellofemoral joint (PFJ) problems. Simultaneously measuring PFJ contact pressures and kinematics is a challenging task. The purpose of this study was to simultaneously measure the kinematics...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Wenhan, Zeng, Xiaolong, Man, Gene Chi‐Wai, Yang, Liu, Zhang, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons Australia, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483075/
https://www.ncbi.nlm.nih.gov/pubmed/35946420
http://dx.doi.org/10.1111/os.13394
_version_ 1784791594428268544
author Huang, Wenhan
Zeng, Xiaolong
Man, Gene Chi‐Wai
Yang, Liu
Zhang, Yu
author_facet Huang, Wenhan
Zeng, Xiaolong
Man, Gene Chi‐Wai
Yang, Liu
Zhang, Yu
author_sort Huang, Wenhan
collection PubMed
description OBJECTIVE: Patellofemoral kinematics and contact mechanics are important measurements for the assessment of patellofemoral joint (PFJ) problems. Simultaneously measuring PFJ contact pressures and kinematics is a challenging task. The purpose of this study was to simultaneously measure the kinematics and mean/peak contact pressures in the PFJs of cadaveric knees. METHODS: This was a comparative study performed on fresh cadaveric knees. The kinematic data was acquired for nine cadaveric knees using an optical tracking system. Data about the contact pressure and contact area in the PFJ was obtained at knee flexion angles of 0°, 30°, 60°, 90°, and 120° using a pressure sensor. Intraclass correlation coefficients (ICCs) and minimal detectable differences (MDDs) of six degrees of freedom (6 DOF) in the PFJs were calculated. ICCs and the MDDs of contact pressure, peak pressure, and contact area in the PFJs were also analyzed. We also compared the kinematics of the cadaveric knees before and after the insertion of the pressure sensor. RESULTS: All ICC values of 6 DOF in the PFJs were found to be greater than or equal to 0.924. Regarding medial–lateral rotation, the patellar showed a simplified movement pattern that demonstrated progressive lateral rotation of 4.8° ± 3.4° at 120° of knee flexion. While for patellar tilting, the patella showed medial tilting that peaked at 7.2 ± 2.5° at 30° of knee flexion. Whereas no significant differences in PFJ kinematics were found between with and without the placement of the pressure sensor at all knee flexions (P > 0.05). Most of the ICC values for contact pressure, peak contact pressure, and contact area ranged from 0.8 to 0.9. The MDDs for rotational displacement were 0.9° and 0.6 mm for translational displacement. No statistical differences in patellar kinematics were found before and after the insertion of the pressure sensor. CONCLUSIONS: The setup in the present study enables researchers to simultaneously and synchronously collect real‐time PFJ kinematics and tibiofemoral joint (TFJ) biomechanical kinematic data with high reliability. The low MDDs enabled the researchers to obtain an accurate interpretation of the kinematic and contact mechanics measurement using the experimental setting used in the present study.
format Online
Article
Text
id pubmed-9483075
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons Australia, Ltd
record_format MEDLINE/PubMed
spelling pubmed-94830752022-09-29 Simultaneous Measurement of Patellofemoral Joint Kinematics and Contact Mechanics in Intact Knees: A Cadaveric Study Huang, Wenhan Zeng, Xiaolong Man, Gene Chi‐Wai Yang, Liu Zhang, Yu Orthop Surg Research Articles OBJECTIVE: Patellofemoral kinematics and contact mechanics are important measurements for the assessment of patellofemoral joint (PFJ) problems. Simultaneously measuring PFJ contact pressures and kinematics is a challenging task. The purpose of this study was to simultaneously measure the kinematics and mean/peak contact pressures in the PFJs of cadaveric knees. METHODS: This was a comparative study performed on fresh cadaveric knees. The kinematic data was acquired for nine cadaveric knees using an optical tracking system. Data about the contact pressure and contact area in the PFJ was obtained at knee flexion angles of 0°, 30°, 60°, 90°, and 120° using a pressure sensor. Intraclass correlation coefficients (ICCs) and minimal detectable differences (MDDs) of six degrees of freedom (6 DOF) in the PFJs were calculated. ICCs and the MDDs of contact pressure, peak pressure, and contact area in the PFJs were also analyzed. We also compared the kinematics of the cadaveric knees before and after the insertion of the pressure sensor. RESULTS: All ICC values of 6 DOF in the PFJs were found to be greater than or equal to 0.924. Regarding medial–lateral rotation, the patellar showed a simplified movement pattern that demonstrated progressive lateral rotation of 4.8° ± 3.4° at 120° of knee flexion. While for patellar tilting, the patella showed medial tilting that peaked at 7.2 ± 2.5° at 30° of knee flexion. Whereas no significant differences in PFJ kinematics were found between with and without the placement of the pressure sensor at all knee flexions (P > 0.05). Most of the ICC values for contact pressure, peak contact pressure, and contact area ranged from 0.8 to 0.9. The MDDs for rotational displacement were 0.9° and 0.6 mm for translational displacement. No statistical differences in patellar kinematics were found before and after the insertion of the pressure sensor. CONCLUSIONS: The setup in the present study enables researchers to simultaneously and synchronously collect real‐time PFJ kinematics and tibiofemoral joint (TFJ) biomechanical kinematic data with high reliability. The low MDDs enabled the researchers to obtain an accurate interpretation of the kinematic and contact mechanics measurement using the experimental setting used in the present study. John Wiley & Sons Australia, Ltd 2022-08-10 /pmc/articles/PMC9483075/ /pubmed/35946420 http://dx.doi.org/10.1111/os.13394 Text en © 2022 The Authors. Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
Huang, Wenhan
Zeng, Xiaolong
Man, Gene Chi‐Wai
Yang, Liu
Zhang, Yu
Simultaneous Measurement of Patellofemoral Joint Kinematics and Contact Mechanics in Intact Knees: A Cadaveric Study
title Simultaneous Measurement of Patellofemoral Joint Kinematics and Contact Mechanics in Intact Knees: A Cadaveric Study
title_full Simultaneous Measurement of Patellofemoral Joint Kinematics and Contact Mechanics in Intact Knees: A Cadaveric Study
title_fullStr Simultaneous Measurement of Patellofemoral Joint Kinematics and Contact Mechanics in Intact Knees: A Cadaveric Study
title_full_unstemmed Simultaneous Measurement of Patellofemoral Joint Kinematics and Contact Mechanics in Intact Knees: A Cadaveric Study
title_short Simultaneous Measurement of Patellofemoral Joint Kinematics and Contact Mechanics in Intact Knees: A Cadaveric Study
title_sort simultaneous measurement of patellofemoral joint kinematics and contact mechanics in intact knees: a cadaveric study
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483075/
https://www.ncbi.nlm.nih.gov/pubmed/35946420
http://dx.doi.org/10.1111/os.13394
work_keys_str_mv AT huangwenhan simultaneousmeasurementofpatellofemoraljointkinematicsandcontactmechanicsinintactkneesacadavericstudy
AT zengxiaolong simultaneousmeasurementofpatellofemoraljointkinematicsandcontactmechanicsinintactkneesacadavericstudy
AT mangenechiwai simultaneousmeasurementofpatellofemoraljointkinematicsandcontactmechanicsinintactkneesacadavericstudy
AT yangliu simultaneousmeasurementofpatellofemoraljointkinematicsandcontactmechanicsinintactkneesacadavericstudy
AT zhangyu simultaneousmeasurementofpatellofemoraljointkinematicsandcontactmechanicsinintactkneesacadavericstudy