Cargando…
Inferring human miRNA–disease associations via multiple kernel fusion on GCNII
Increasing evidence shows that the occurrence of human complex diseases is closely related to the mutation and abnormal expression of microRNAs(miRNAs). MiRNAs have complex and fine regulatory mechanisms, which makes it a promising target for drug discovery and disease diagnosis. Therefore, predicti...
Autores principales: | Lu, Shanghui, Liang, Yong, Li, Le, Liao, Shuilin, Ouyang, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483142/ https://www.ncbi.nlm.nih.gov/pubmed/36134032 http://dx.doi.org/10.3389/fgene.2022.980497 |
Ejemplares similares
-
MDA-SKF: Similarity Kernel Fusion for Accurately Discovering miRNA-Disease Association
por: Jiang, Limin, et al.
Publicado: (2018) -
Inferring pseudogene–MiRNA associations based on an ensemble learning framework with similarity kernel fusion
por: Fan, Chunyan, et al.
Publicado: (2023) -
QIMCMDA: MiRNA-Disease Association Prediction by q-Kernel Information and Matrix Completion
por: Wang, Lin, et al.
Publicado: (2020) -
A Systematic Way to Infer the Regulation Relations of miRNAs on Target Genes and Critical miRNAs in Cancers
por: Xu, Peng, et al.
Publicado: (2020) -
Multivariate Information Fusion With Fast Kernel Learning to Kernel Ridge Regression in Predicting LncRNA-Protein Interactions
por: Shen, Cong, et al.
Publicado: (2019)