Cargando…
Estimating spatio-temporal fields through reinforcement learning
Prediction and estimation of phenomena of interest in aquatic environments are challenging since they present complex spatio-temporal dynamics. Over the past few decades, advances in machine learning and data processing contributed to ocean exploration and sampling using autonomous robots. In this w...
Autores principales: | Padrao, Paulo, Fuentes, Jose, Bobadilla, Leonardo, Smith, Ryan N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483151/ https://www.ncbi.nlm.nih.gov/pubmed/36134337 http://dx.doi.org/10.3389/frobt.2022.878246 |
Ejemplares similares
-
GradTac: Spatio-Temporal Gradient Based Tactile Sensing
por: Ganguly, Kanishka, et al.
Publicado: (2022) -
Toward Benchmarking of Long-Term Spatio-Temporal Maps of Pedestrian Flows for Human-Aware Navigation
por: Vintr, Tomáš, et al.
Publicado: (2022) -
Spatio-temporal categorization for first-person-view videos using a convolutional variational autoencoder and Gaussian processes
por: Nagano, Masatoshi, et al.
Publicado: (2022) -
Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning
por: Lambert, Reeve, et al.
Publicado: (2021) -
Reactive Reinforcement Learning in Asynchronous Environments
por: Travnik, Jaden B., et al.
Publicado: (2018)