Cargando…
Comparing Out-of-Sample Performance of Machine Learning Methods to Forecast U.S. GDP Growth
We run a ‘horse race’ among popular forecasting methods, including machine learning (ML) and deep learning (DL) methods, that are employed to forecast U.S. GDP growth. Given the unstable nature of GDP growth data, we implement a recursive forecasting strategy to calculate the out-of-sample performan...
Autores principales: | Chu, Ba, Qureshi, Shafiullah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483293/ https://www.ncbi.nlm.nih.gov/pubmed/36157276 http://dx.doi.org/10.1007/s10614-022-10312-z |
Ejemplares similares
-
GDP Forecasting: Machine Learning, Linear or Autoregression?
por: Maccarrone, Giovanni, et al.
Publicado: (2021) -
Application of empirical mode decomposition to improve deep learning for US GDP data forecasting
por: Lin, Shih-Lin
Publicado: (2022) -
Forecasting GDP with many predictors in a small open economy: forecast or information pooling?
por: Chow, Hwee Kwan, et al.
Publicado: (2023) -
The U.S. Nonfarm Payroll and the out-of-sample predictability of output growth for over six decades
por: Salisu, Afees A., et al.
Publicado: (2022) -
Application of Supervised Machine Learning Techniques to Forecast the COVID-19 U.S. Recession and Stock Market Crash
por: Malladi, Rama K.
Publicado: (2022)