Cargando…

Ingredients for Responsible Machine Learning: A Commented Review of The Hitchhiker’s Guide to Responsible Machine Learning

In The hitchhiker’s guide to responsible machine learning, Biecek, Kozak, and Zawada (here BKZ) provide an illustrated and engaging step-by-step guide on how to perform a machine learning (ML) analysis such that the algorithms, the software, and the entire process is interpretable and transparent fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Marmolejo-Ramos, Fernando, Ospina, Raydonal, García-Ceja, Enrique, Correa, Juan C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483296/
https://www.ncbi.nlm.nih.gov/pubmed/36160758
http://dx.doi.org/10.1007/s44199-022-00048-y
Descripción
Sumario:In The hitchhiker’s guide to responsible machine learning, Biecek, Kozak, and Zawada (here BKZ) provide an illustrated and engaging step-by-step guide on how to perform a machine learning (ML) analysis such that the algorithms, the software, and the entire process is interpretable and transparent for both the data scientist and the end user. This review summarises BKZ’s book and elaborates on three elements key to ML analyses: inductive inference, causality, and interpretability.