Cargando…
Securing federated learning with blockchain: a systematic literature review
Federated learning (FL) is a promising framework for distributed machine learning that trains models without sharing local data while protecting privacy. FL exploits the concept of collaborative learning and builds privacy-preserving models. Nevertheless, the integral features of FL are fraught with...
Autores principales: | Qammar, Attia, Karim, Ahmad, Ning, Huansheng, Ding, Jianguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483378/ https://www.ncbi.nlm.nih.gov/pubmed/36160367 http://dx.doi.org/10.1007/s10462-022-10271-9 |
Ejemplares similares
-
Blockchain Empowered Federated Learning Ecosystem for Securing Consumer IoT Features Analysis
por: Alghamdi, Abdullah, et al.
Publicado: (2022) -
DAG-Based Blockchain Sharding for Secure Federated Learning with Non-IID Data
por: Lee, Jungjae, et al.
Publicado: (2022) -
Blockchain for federated learning toward secure distributed machine learning systems: a systemic survey
por: Li, Dun, et al.
Publicado: (2021) -
A Systematic Literature Review of Blockchain Technology for Internet of Drones Security
por: Harbi, Yasmine, et al.
Publicado: (2022) -
Secure and Provenance Enhanced Internet of Health Things Framework: A Blockchain Managed Federated Learning Approach
Publicado: (2020)