Cargando…

Impact of model misspecification on model-based tests in PK studies with parallel design: real case and simulation studies

This article evaluates the performance of pharmacokinetic (PK) equivalence testing between two formulations of a drug through the Two-One Sided Tests (TOST) by a model-based approach (MB-TOST), as an alternative to the classical non-compartmental approach (NCA-TOST), for a sparse design with a few t...

Descripción completa

Detalles Bibliográficos
Autores principales: Guhl, Mélanie, Mercier, François, Hofmann, Carsten, Sharan, Satish, Donnelly, Mark, Feng, Kairui, Sun, Wanjie, Sun, Guoying, Grosser, Stella, Zhao, Liang, Fang, Lanyan, Mentré, France, Comets, Emmanuelle, Bertrand, Julie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483500/
https://www.ncbi.nlm.nih.gov/pubmed/36112338
http://dx.doi.org/10.1007/s10928-022-09821-z
Descripción
Sumario:This article evaluates the performance of pharmacokinetic (PK) equivalence testing between two formulations of a drug through the Two-One Sided Tests (TOST) by a model-based approach (MB-TOST), as an alternative to the classical non-compartmental approach (NCA-TOST), for a sparse design with a few time points per subject. We focused on the impact of model misspecification and the relevance of model selection for the reference data. We first analysed PK data from phase I studies of gantenerumab, a monoclonal antibody for the treatment of Alzheimer’s disease. Using the original rich sample data, we compared MB-TOST to NCA-TOST for validation. Then, the analysis was repeated on a sparse subset of the original data with MB-TOST. This analysis inspired a simulation study with rich and sparse designs. With rich designs, we compared NCA-TOST and MB-TOST in terms of type I error and study power. With both designs, we explored the impact of misspecifying the model on the performance of MB-TOST and adding a model selection step. Using the observed data, the results of both approaches were in general concordance. MB-TOST results were robust with sparse designs when the underlying PK structural model was correctly specified. Using the simulated data with a rich design, the type I error of NCA-TOST was close to the nominal level. When using the simulated model, the type I error of MB-TOST was controlled on rich and sparse designs, but using a misspecified model led to inflated type I errors. Adding a model selection step on the reference data reduced the inflation. MB-TOST appears as a robust alternative to NCA-TOST, provided that the PK model is correctly specified and the test drug has the same PK structural model as the reference drug.