Cargando…

Flow condensation heat transfer coefficient and pressure drop data for R134a alternative refrigerants R513A and R450A in a 0.95-mm-diameter minichannel

Flow condensation heat transfer coefficients and pressure drop data were collected in a small-scale vapor compression cycle. The test section consisted of seven parallel, 0.95-mm-diameter square channels which utilized a heat flux block to measure the temperature gradients of the heat leaving during...

Descripción completa

Detalles Bibliográficos
Autores principales: Morrow, Jordan A., Derby, Melanie M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483720/
https://www.ncbi.nlm.nih.gov/pubmed/36131950
http://dx.doi.org/10.1016/j.dib.2022.108577
Descripción
Sumario:Flow condensation heat transfer coefficients and pressure drop data were collected in a small-scale vapor compression cycle. The test section consisted of seven parallel, 0.95-mm-diameter square channels which utilized a heat flux block to measure the temperature gradients of the heat leaving during the condensation process. Heat transfer coefficients and pressure drops were measured using the temperatures and pressures measured during experiments. Experimental flow condensation heat transfer coefficient and pressure drop data are tabulated for R134a, R513A, and R450A for a range of mass fluxes (i.e., 200 – 500 kg/m(2)s) and qualities (i.e., 0.2 – 0.8) at a saturation temperature of 40°C. The heat transfer coefficient uncertainties for all experiments were ± 6.3 – 21.2%, with an average uncertainty of ± 9.8%. Data include refrigerant saturation temperature, wall temperature, mass flux, quality, condensation heat transfer coefficient and its uncertainty, and pressure drop. The data tabulated are the raw data from the paper “Flow condensation heat transfer and pressure drop performance of R134a alternative refrigerants R513A and R450A in a 0.95-mm-diameter minichannel,” published by the International Journal of Heat and Mass Transfer [1].