Cargando…
Human and machine similarity judgments in forensic firearm comparisons
It is unclear whether humans assess similarity differently than automated algorithms in firearms comparisons. Human participants (untrained in firearm examination) were asked to assess the similarity of pairs of images (from 0 to 100). A sample of 40 pairs of cartridge casing 2D-images was used. The...
Autores principales: | Cuellar, Maria, Gonzalez, Cleotilde, Dror, Itiel E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483780/ https://www.ncbi.nlm.nih.gov/pubmed/36132433 http://dx.doi.org/10.1016/j.fsisyn.2022.100283 |
Ejemplares similares
-
Linear Sequential Unmasking–Expanded (LSU-E): A general approach for improving decision making as well as minimizing noise and bias
por: Dror, Itiel E., et al.
Publicado: (2021) -
Planning, design and logistics of a decision analysis study: The FBI/Ames study involving forensic firearms examiners
por: Monson, Keith L., et al.
Publicado: (2022) -
Implementing blind proficiency testing in forensic laboratories: Motivation, obstacles, and recommendations
por: Mejia, Robin, et al.
Publicado: (2020) -
Reimagining forensic science – The mission of the forensic laboratory
por: Wickenheiser, Ray A.
Publicado: (2021) -
Machine learning algorithms in forensic science: A response to Morrison et al. (2022)
por: Swofford, H., et al.
Publicado: (2022)