Cargando…
EdgeSHAPer: Bond-centric Shapley value-based explanation method for graph neural networks
Graph neural networks (GNNs) recursively propagate signals along the edges of an input graph, integrate node feature information with graph structure, and learn object representations. Like other deep neural network models, GNNs have notorious black box character. For GNNs, only few approaches are a...
Autores principales: | Mastropietro, Andrea, Pasculli, Giuseppe, Feldmann, Christian, Rodríguez-Pérez, Raquel, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483788/ https://www.ncbi.nlm.nih.gov/pubmed/36134335 http://dx.doi.org/10.1016/j.isci.2022.105043 |
Ejemplares similares
-
Protocol to explain graph neural network predictions using an edge-centric Shapley value-based approach
por: Mastropietro, Andrea, et al.
Publicado: (2022) -
Calculation of exact Shapley values for explaining support vector machine models using the radial basis function kernel
por: Mastropietro, Andrea, et al.
Publicado: (2023) -
Calculation of exact Shapley values for support vector machines with Tanimoto kernel enables model interpretation
por: Feldmann, Christian, et al.
Publicado: (2022) -
Explaining Multiclass Compound Activity Predictions Using Counterfactuals and Shapley Values
por: Lamens, Alec, et al.
Publicado: (2023) -
Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2020)