Cargando…
Multi-trait genome prediction of new environments with partial least squares
The genomic selection (GS) methodology proposed over 20 years ago by Meuwissen et al. (Genetics, 2001) has revolutionized plant breeding. A predictive methodology that trains statistical machine learning algorithms with phenotypic and genotypic data of a reference population and makes predictions fo...
Autores principales: | Montesinos-López, Osval A., Montesinos-López, Abelardo, Bernal Sandoval, David Alejandro, Mosqueda-Gonzalez, Brandon Alejandro, Valenzo-Jiménez, Marco Alberto, Crossa, José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483856/ https://www.ncbi.nlm.nih.gov/pubmed/36134027 http://dx.doi.org/10.3389/fgene.2022.966775 |
Ejemplares similares
-
Partial Least Squares Enhances Genomic Prediction of New Environments
por: Montesinos-López, Osval A., et al.
Publicado: (2022) -
Partial least squares enhance multi-trait genomic prediction of potato cultivars in new environments
por: Ortiz, Rodomiro, et al.
Publicado: (2023) -
A General-Purpose Machine Learning R Library for Sparse Kernels Methods With an Application for Genome-Based Prediction
por: Montesinos López, Osval Antonio, et al.
Publicado: (2022) -
A New Deep Learning Calibration Method Enhances Genome-Based Prediction of Continuous Crop Traits
por: Montesinos-López, Osval A., et al.
Publicado: (2021) -
Statistical Machine-Learning Methods for Genomic Prediction Using the SKM Library
por: Montesinos López, Osval A., et al.
Publicado: (2023)