Cargando…
PM(2.5) Forecast in Korea using the Long Short-Term Memory (LSTM) Model
The National Institute of Environmental Research, under the Ministry of Environment of Korea, provides two-day forecasts, through AirKorea, of the concentration of particulate matter with diameters of ≤ 2.5 μm (PM(2.5)) in terms of four grades (low, moderate, high, and very high) over 19 districts n...
Autores principales: | Ho, Chang-Hoi, Park, Ingyu, Kim, Jinwon, Lee, Jae-Bum |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Meteorological Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483905/ https://www.ncbi.nlm.nih.gov/pubmed/36157837 http://dx.doi.org/10.1007/s13143-022-00293-2 |
Ejemplares similares
-
Research on PM2.5 Spatiotemporal Forecasting Model Based on LSTM Neural Network
por: Zhao, Fang, et al.
Publicado: (2021) -
Forecasting of Covid-19 positive cases in Indonesia using long short-term memory (LSTM)
por: Sunjaya, Bryan Alfason, et al.
Publicado: (2023) -
A Deep CNN-LSTM Model for Particulate Matter (PM(2.5)) Forecasting in Smart Cities
por: Huang, Chiou-Jye, et al.
Publicado: (2018) -
Data science approach to stock prices forecasting in Indonesia during Covid-19 using Long Short-Term Memory (LSTM)
por: Budiharto, Widodo
Publicado: (2021) -
Lane Position Detection Based on Long Short-Term Memory (LSTM)
por: Yang, Wei, et al.
Publicado: (2020)