Cargando…
DBF-Net: a semi-supervised dual-task balanced fusion network for segmenting infected regions from lung CT images
Accurate segmentation of infected regions in lung computed tomography (CT) images is essential to improve the timeliness and effectiveness of treatment for coronavirus disease 2019 (COVID-19). However, the main difficulties in developing of lung lesion segmentation in COVID-19 are still the fuzzy bo...
Autores principales: | Lu, Xiaoyan, Xu, Yang, Yuan, Wenhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483907/ https://www.ncbi.nlm.nih.gov/pubmed/37193370 http://dx.doi.org/10.1007/s12530-022-09466-w |
Ejemplares similares
-
Semi-Supervised Medical Image Segmentation Guided by Bi-Directional Constrained Dual-Task Consistency
por: Pan, Ming-Zhang, et al.
Publicado: (2023) -
PDRF-Net: a progressive dense residual fusion network for COVID-19 lung CT image segmentation
por: Lu, Xiaoyan, et al.
Publicado: (2023) -
Integrating Semi-supervised and Supervised Learning Methods for Label Fusion in Multi-Atlas Based Image Segmentation
por: Zheng, Qiang, et al.
Publicado: (2018) -
SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation
por: Ullah, Zahid, et al.
Publicado: (2023) -
Semi-supervised nuclei segmentation based on multi-edge features fusion attention network
por: Li, Huachang, et al.
Publicado: (2023)