Cargando…
A novel Ontology-guided Attribute Partitioning ensemble learning model for early prediction of cognitive deficits using quantitative Structural MRI in very preterm infants
Structural magnetic resonance imaging studies have shown that brain anatomical abnormalities are associated with cognitive deficits in preterm infants. Brain maturation and geometric features can be used with machine learning models for predicting later neurodevelopmental deficits. However, traditio...
Autores principales: | Li, Zhiyuan, Li, Hailong, Braimah, Adebayo, Dillman, Jonathan R., Parikh, Nehal A., He, Lili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483989/ https://www.ncbi.nlm.nih.gov/pubmed/35850161 http://dx.doi.org/10.1016/j.neuroimage.2022.119484 |
Ejemplares similares
-
Deep Multimodal Learning From MRI and Clinical Data for Early Prediction of Neurodevelopmental Deficits in Very Preterm Infants
por: He, Lili, et al.
Publicado: (2021) -
A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants
por: He, Lili, et al.
Publicado: (2020) -
A Semi-Supervised Graph Convolutional Network for Early Prediction of Motor Abnormalities in Very Preterm Infants
por: Li, Hailong, et al.
Publicado: (2023) -
Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework
por: He, Lili, et al.
Publicado: (2018) -
Early Prediction of Cognitive Deficit in Very Preterm Infants Using Brain Structural Connectome With Transfer Learning Enhanced Deep Convolutional Neural Networks
por: Chen, Ming, et al.
Publicado: (2020)