Cargando…
Identification of key predictors of hospital mortality in critically ill patients with embolic stroke using machine learning
Embolic stroke (ES) is characterized by high morbidity and mortality. Its mortality predictors remain unclear. The present study aimed to use machine learning (ML) to identify the key predictors of mortality for ES patients in the intensive care unit (ICU). Data were extracted from two large ICU dat...
Autores principales: | Liu, Wei, Ma, Wei, Bai, Na, Li, Chunyan, Liu, Kuangpin, Yang, Jinwei, Zhang, Sijia, Zhu, Kewei, Zhou, Qiang, Liu, Hua, Guo, Jianhui, Li, Liyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484010/ https://www.ncbi.nlm.nih.gov/pubmed/35993194 http://dx.doi.org/10.1042/BSR20220995 |
Ejemplares similares
-
Effects of ischemic postconditioning and long non-coding RNAs in ischemic stroke
por: Ma, Wei, et al.
Publicado: (2022) -
Integrative Analysis Reveals the Expression Pattern of SOX9 in Satellite Glial Cells after Sciatic Nerve Injury
por: Liu, Kuangpin, et al.
Publicado: (2023) -
Advances in Transcription Factors Related to Neuroglial Cell Reprogramming
por: Liu, Kuangpin, et al.
Publicado: (2020) -
Stroke risk in arthritis: A systematic review and meta-analysis of cohort studies
por: Liu, Wei, et al.
Publicado: (2021) -
Differential Diagnostic Value of Machine Learning–Based Models for Embolic Stroke
por: Kuo, HsunYu, et al.
Publicado: (2023)