Cargando…
WNT signaling and cancer stemness
Cancer stemness, defined as the self-renewal and tumor-initiation potential of cancer stem cells (CSCs), is a cancer biology property featuring activation of CSC signaling networks. Canonical WNT signaling through Frizzled and LRP5/6 receptors is transmitted to the β-catenin-TCF/LEF-dependent transc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484141/ https://www.ncbi.nlm.nih.gov/pubmed/35837811 http://dx.doi.org/10.1042/EBC20220016 |
_version_ | 1784791821860208640 |
---|---|
author | Katoh, Masuko Katoh, Masaru |
author_facet | Katoh, Masuko Katoh, Masaru |
author_sort | Katoh, Masuko |
collection | PubMed |
description | Cancer stemness, defined as the self-renewal and tumor-initiation potential of cancer stem cells (CSCs), is a cancer biology property featuring activation of CSC signaling networks. Canonical WNT signaling through Frizzled and LRP5/6 receptors is transmitted to the β-catenin-TCF/LEF-dependent transcription machinery to up-regulate MYC, CCND1, LGR5, SNAI1, IFNG, CCL28, CD274 (PD-L1) and other target genes. Canonical WNT signaling causes expansion of rapidly cycling CSCs and modulates both immune surveillance and immune tolerance. In contrast, noncanonical WNT signaling through Frizzled or the ROR1/2 receptors is transmitted to phospholipase C, Rac1 and RhoA to control transcriptional outputs mediated by NFAT, AP-1 and YAP-TEAD, respectively. Noncanonical WNT signaling supports maintenance of slowly cycling, quiescent or dormant CSCs and promotes epithelial–mesenchymal transition via crosstalk with TGFβ (transforming growth factor-β) signaling cascades, while the TGFβ signaling network induces immune evasion. The WNT signaling network orchestrates the functions of cancer-associated fibroblasts, endothelial cells and immune cells in the tumor microenvironment and fine-tunes stemness in human cancers, such as breast, colorectal, gastric and lung cancers. Here, WNT-related cancer stemness features, including proliferation/dormancy plasticity, epithelial–mesenchymal plasticity and immune-landscape plasticity, will be discussed. Porcupine inhibitors, β-catenin protein–protein interaction inhibitors, β-catenin proteolysis targeting chimeras, ROR1 inhibitors and ROR1-targeted biologics are investigational drugs targeting WNT signaling cascades. Mechanisms of cancer plasticity regulated by the WNT signaling network are promising targets for therapeutic intervention; however, further understanding of context-dependent reprogramming trajectories might be necessary to optimize the clinical benefits of WNT-targeted monotherapy and applied combination therapy for patients with cancer. |
format | Online Article Text |
id | pubmed-9484141 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94841412022-09-22 WNT signaling and cancer stemness Katoh, Masuko Katoh, Masaru Essays Biochem Cancer Cancer stemness, defined as the self-renewal and tumor-initiation potential of cancer stem cells (CSCs), is a cancer biology property featuring activation of CSC signaling networks. Canonical WNT signaling through Frizzled and LRP5/6 receptors is transmitted to the β-catenin-TCF/LEF-dependent transcription machinery to up-regulate MYC, CCND1, LGR5, SNAI1, IFNG, CCL28, CD274 (PD-L1) and other target genes. Canonical WNT signaling causes expansion of rapidly cycling CSCs and modulates both immune surveillance and immune tolerance. In contrast, noncanonical WNT signaling through Frizzled or the ROR1/2 receptors is transmitted to phospholipase C, Rac1 and RhoA to control transcriptional outputs mediated by NFAT, AP-1 and YAP-TEAD, respectively. Noncanonical WNT signaling supports maintenance of slowly cycling, quiescent or dormant CSCs and promotes epithelial–mesenchymal transition via crosstalk with TGFβ (transforming growth factor-β) signaling cascades, while the TGFβ signaling network induces immune evasion. The WNT signaling network orchestrates the functions of cancer-associated fibroblasts, endothelial cells and immune cells in the tumor microenvironment and fine-tunes stemness in human cancers, such as breast, colorectal, gastric and lung cancers. Here, WNT-related cancer stemness features, including proliferation/dormancy plasticity, epithelial–mesenchymal plasticity and immune-landscape plasticity, will be discussed. Porcupine inhibitors, β-catenin protein–protein interaction inhibitors, β-catenin proteolysis targeting chimeras, ROR1 inhibitors and ROR1-targeted biologics are investigational drugs targeting WNT signaling cascades. Mechanisms of cancer plasticity regulated by the WNT signaling network are promising targets for therapeutic intervention; however, further understanding of context-dependent reprogramming trajectories might be necessary to optimize the clinical benefits of WNT-targeted monotherapy and applied combination therapy for patients with cancer. Portland Press Ltd. 2022-09 2022-09-16 /pmc/articles/PMC9484141/ /pubmed/35837811 http://dx.doi.org/10.1042/EBC20220016 Text en © 2022 The Author(s). https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Cancer Katoh, Masuko Katoh, Masaru WNT signaling and cancer stemness |
title | WNT signaling and cancer stemness |
title_full | WNT signaling and cancer stemness |
title_fullStr | WNT signaling and cancer stemness |
title_full_unstemmed | WNT signaling and cancer stemness |
title_short | WNT signaling and cancer stemness |
title_sort | wnt signaling and cancer stemness |
topic | Cancer |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484141/ https://www.ncbi.nlm.nih.gov/pubmed/35837811 http://dx.doi.org/10.1042/EBC20220016 |
work_keys_str_mv | AT katohmasuko wntsignalingandcancerstemness AT katohmasaru wntsignalingandcancerstemness |