Cargando…
Model-free reinforcement learning for robust locomotion using demonstrations from trajectory optimization
We present a general, two-stage reinforcement learning approach to create robust policies that can be deployed on real robots without any additional training using a single demonstration generated by trajectory optimization. The demonstration is used in the first stage as a starting point to facilit...
Autores principales: | Bogdanovic, Miroslav, Khadiv , Majid, Righetti , Ludovic |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484268/ https://www.ncbi.nlm.nih.gov/pubmed/36134338 http://dx.doi.org/10.3389/frobt.2022.854212 |
Ejemplares similares
-
Joint elasticity produces energy efficiency in underwater locomotion: Verification with deep reinforcement learning
por: Zheng, Chu, et al.
Publicado: (2022) -
Mediating Between Contact Feasibility and Robustness of Trajectory Optimization Through Chance Complementarity Constraints
por: Drnach , Luke, et al.
Publicado: (2022) -
Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning
por: Lambert, Reeve, et al.
Publicado: (2021) -
Terrain-Perception-Free Quadrupedal Spinning Locomotion on Versatile Terrains: Modeling, Analysis, and Experimental Validation
por: Zhu, Hongwu, et al.
Publicado: (2021) -
Design Optimization of a Pneumatic Soft Robotic Actuator Using Model-Based Optimization and Deep Reinforcement Learning
por: Raeisinezhad, Mahsa, et al.
Publicado: (2021)