Cargando…
Corrigendum: Investigation of a novel deep learning-based computed tomography perfusion mapping framework for functional lung avoidance radiotherapy
Autores principales: | Ren, Ge, Lam, Sai-kit, Zhang, Jiang, Xiao, Haonan, Cheung, Andy Lai-yin, Ho, Wai-yin, Qin, Jing, Cai, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484272/ https://www.ncbi.nlm.nih.gov/pubmed/36132139 http://dx.doi.org/10.3389/fonc.2022.1005287 |
Ejemplares similares
-
Investigation of a Novel Deep Learning-Based Computed Tomography Perfusion Mapping Framework for Functional Lung Avoidance Radiotherapy
por: Ren, Ge, et al.
Publicado: (2021) -
A Transfer Learning Framework for Deep Learning-Based CT-to-Perfusion Mapping on Lung Cancer Patients
por: Ren, Ge, et al.
Publicado: (2022) -
Evaluation of Multisource Adaptive MRI Fusion for Gross Tumor Volume Delineation of Hepatocellular Carcinoma
por: Cheung, Andy Lai-Yin, et al.
Publicado: (2022) -
A Multi-Center Study of CT-Based Neck Nodal Radiomics for Predicting an Adaptive Radiotherapy Trigger of Ill-Fitted Thermoplastic Masks in Patients with Nasopharyngeal Carcinoma
por: Lam, Sai-Kit, et al.
Publicado: (2022) -
Construction dispute research: conceptualisation, avoidance and resolution
por: Cheung, Sai
Publicado: (2014)