Cargando…
Quantum invariants of hyperbolic knots and extreme values of trigonometric products
In this paper, we study the relation between the function [Formula: see text] , which arises from a quantum invariant of the figure-eight knot, and Sudler’s trigonometric product. We find [Formula: see text] up to a constant factor along continued fraction convergents to a quadratic irrational, and...
Autores principales: | Aistleitner, Christoph, Borda, Bence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484553/ https://www.ncbi.nlm.nih.gov/pubmed/36147943 http://dx.doi.org/10.1007/s00209-022-03086-5 |
Ejemplares similares
-
Quantum hyperbolic invariants of knots
por: Kashaev, R M
Publicado: (1997) -
Some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions
por: Huang, Li-Guo, et al.
Publicado: (2018) -
The Resurgent Structure of Quantum Knot Invariants
por: Garoufalidis, Stavros, et al.
Publicado: (2021) -
An introduction to quantum and Vassiliev knot invariants
por: Jackson, David M, et al.
Publicado: (2019) -
Quantum invariants of knots and 3-manifolds
por: Turaev, Vladimir G
Publicado: (2016)