Cargando…
A predictor model of treatment resistance in schizophrenia using data from electronic health records
OBJECTIVES: To develop a prognostic tool of treatment resistant schizophrenia (TRS) in a large and diverse clinical cohort, with comprehensive coverage of patients using mental health services in four London boroughs. METHODS: We used the Least Absolute Shrinkage and Selection Operator (LASSO) for t...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484642/ https://www.ncbi.nlm.nih.gov/pubmed/36121864 http://dx.doi.org/10.1371/journal.pone.0274864 |
_version_ | 1784791916185911296 |
---|---|
author | Kadra-Scalzo, Giouliana Fonseca de Freitas, Daniela Agbedjro, Deborah Francis, Emma Ridler, Isobel Pritchard, Megan Shetty, Hitesh Segev, Aviv Casetta, Cecilia Smart, Sophie E. Morris, Anna Downs, Johnny Christensen, Søren Rahn Bak, Nikolaj Kinon, Bruce J. Stahl, Daniel Hayes, Richard D. MacCabe, James H. |
author_facet | Kadra-Scalzo, Giouliana Fonseca de Freitas, Daniela Agbedjro, Deborah Francis, Emma Ridler, Isobel Pritchard, Megan Shetty, Hitesh Segev, Aviv Casetta, Cecilia Smart, Sophie E. Morris, Anna Downs, Johnny Christensen, Søren Rahn Bak, Nikolaj Kinon, Bruce J. Stahl, Daniel Hayes, Richard D. MacCabe, James H. |
author_sort | Kadra-Scalzo, Giouliana |
collection | PubMed |
description | OBJECTIVES: To develop a prognostic tool of treatment resistant schizophrenia (TRS) in a large and diverse clinical cohort, with comprehensive coverage of patients using mental health services in four London boroughs. METHODS: We used the Least Absolute Shrinkage and Selection Operator (LASSO) for time-to-event data, to develop a risk prediction model from the first antipsychotic prescription to the development of TRS, using data from electronic health records. RESULTS: We reviewed the clinical records of 1,515 patients with a schizophrenia spectrum disorder and observed that 253 (17%) developed TRS. The Cox LASSO survival model produced an internally validated Harrel’s C index of 0.60. A Kaplan-Meier curve indicated that the hazard of developing TRS remained constant over the observation period. Predictors of TRS were: having more inpatient days in the three months before and after the first antipsychotic, more community face-to-face clinical contact in the three months before the first antipsychotic, minor cognitive problems, and younger age at the time of the first antipsychotic. CONCLUSIONS: Routinely collected information, readily available at the start of treatment, gives some indication of TRS but is unlikely to be adequate alone. These results provide further evidence that earlier onset is a risk factor for TRS. |
format | Online Article Text |
id | pubmed-9484642 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-94846422022-09-20 A predictor model of treatment resistance in schizophrenia using data from electronic health records Kadra-Scalzo, Giouliana Fonseca de Freitas, Daniela Agbedjro, Deborah Francis, Emma Ridler, Isobel Pritchard, Megan Shetty, Hitesh Segev, Aviv Casetta, Cecilia Smart, Sophie E. Morris, Anna Downs, Johnny Christensen, Søren Rahn Bak, Nikolaj Kinon, Bruce J. Stahl, Daniel Hayes, Richard D. MacCabe, James H. PLoS One Research Article OBJECTIVES: To develop a prognostic tool of treatment resistant schizophrenia (TRS) in a large and diverse clinical cohort, with comprehensive coverage of patients using mental health services in four London boroughs. METHODS: We used the Least Absolute Shrinkage and Selection Operator (LASSO) for time-to-event data, to develop a risk prediction model from the first antipsychotic prescription to the development of TRS, using data from electronic health records. RESULTS: We reviewed the clinical records of 1,515 patients with a schizophrenia spectrum disorder and observed that 253 (17%) developed TRS. The Cox LASSO survival model produced an internally validated Harrel’s C index of 0.60. A Kaplan-Meier curve indicated that the hazard of developing TRS remained constant over the observation period. Predictors of TRS were: having more inpatient days in the three months before and after the first antipsychotic, more community face-to-face clinical contact in the three months before the first antipsychotic, minor cognitive problems, and younger age at the time of the first antipsychotic. CONCLUSIONS: Routinely collected information, readily available at the start of treatment, gives some indication of TRS but is unlikely to be adequate alone. These results provide further evidence that earlier onset is a risk factor for TRS. Public Library of Science 2022-09-19 /pmc/articles/PMC9484642/ /pubmed/36121864 http://dx.doi.org/10.1371/journal.pone.0274864 Text en © 2022 Kadra-Scalzo et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kadra-Scalzo, Giouliana Fonseca de Freitas, Daniela Agbedjro, Deborah Francis, Emma Ridler, Isobel Pritchard, Megan Shetty, Hitesh Segev, Aviv Casetta, Cecilia Smart, Sophie E. Morris, Anna Downs, Johnny Christensen, Søren Rahn Bak, Nikolaj Kinon, Bruce J. Stahl, Daniel Hayes, Richard D. MacCabe, James H. A predictor model of treatment resistance in schizophrenia using data from electronic health records |
title | A predictor model of treatment resistance in schizophrenia using data from electronic health records |
title_full | A predictor model of treatment resistance in schizophrenia using data from electronic health records |
title_fullStr | A predictor model of treatment resistance in schizophrenia using data from electronic health records |
title_full_unstemmed | A predictor model of treatment resistance in schizophrenia using data from electronic health records |
title_short | A predictor model of treatment resistance in schizophrenia using data from electronic health records |
title_sort | predictor model of treatment resistance in schizophrenia using data from electronic health records |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484642/ https://www.ncbi.nlm.nih.gov/pubmed/36121864 http://dx.doi.org/10.1371/journal.pone.0274864 |
work_keys_str_mv | AT kadrascalzogiouliana apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT fonsecadefreitasdaniela apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT agbedjrodeborah apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT francisemma apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT ridlerisobel apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT pritchardmegan apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT shettyhitesh apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT segevaviv apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT casettacecilia apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT smartsophiee apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT morrisanna apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT downsjohnny apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT christensensørenrahn apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT baknikolaj apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT kinonbrucej apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT stahldaniel apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT hayesrichardd apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT maccabejamesh apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT kadrascalzogiouliana predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT fonsecadefreitasdaniela predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT agbedjrodeborah predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT francisemma predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT ridlerisobel predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT pritchardmegan predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT shettyhitesh predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT segevaviv predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT casettacecilia predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT smartsophiee predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT morrisanna predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT downsjohnny predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT christensensørenrahn predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT baknikolaj predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT kinonbrucej predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT stahldaniel predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT hayesrichardd predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT maccabejamesh predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords |