Cargando…
A machine learning ensemble approach for 5- and 10-year breast cancer invasive disease event classification
Designing targeted treatments for breast cancer patients after primary tumor removal is necessary to prevent the occurrence of invasive disease events (IDEs), such as recurrence, metastasis, contralateral and second tumors, over time. However, due to the molecular heterogeneity of this disease, pred...
Autores principales: | Massafra, Raffaella, Comes, Maria Colomba, Bove, Samantha, Didonna, Vittorio, Diotaiuti, Sergio, Giotta, Francesco, Latorre, Agnese, La Forgia, Daniele, Nardone, Annalisa, Pomarico, Domenico, Ressa, Cosmo Maurizio, Rizzo, Alessandro, Tamborra, Pasquale, Zito, Alfredo, Lorusso, Vito, Fanizzi, Annarita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484691/ https://www.ncbi.nlm.nih.gov/pubmed/36121822 http://dx.doi.org/10.1371/journal.pone.0274691 |
Ejemplares similares
-
Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs
por: Comes, Maria Colomba, et al.
Publicado: (2021) -
Radiomic Feature Reduction Approach to Predict Breast Cancer by Contrast-Enhanced Spectral Mammography Images
por: Massafra, Raffaella, et al.
Publicado: (2021) -
Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
por: Massafra, Raffaella, et al.
Publicado: (2023) -
Predicting of Sentinel Lymph Node Status in Breast Cancer Patients with Clinically Negative Nodes: A Validation Study
por: Fanizzi, Annarita, et al.
Publicado: (2021) -
Machine learning survival models trained on clinical data to identify high risk patients with hormone responsive HER2 negative breast cancer
por: Fanizzi, Annarita, et al.
Publicado: (2023)