Cargando…
Unsupervised feature selection based on incremental forward iterative Laplacian score
Feature selection facilitates intelligent information processing, and the unsupervised learning of feature selection has become important. In terms of unsupervised feature selection, the Laplacian score (LS) provides a powerful measurement and optimization method, and good performance has been achie...
Autores principales: | Jiang, Jiefang, Zhang, Xianyong, Yang, Jilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484723/ https://www.ncbi.nlm.nih.gov/pubmed/36160366 http://dx.doi.org/10.1007/s10462-022-10274-6 |
Ejemplares similares
-
Rough sets and Laplacian score based cost-sensitive feature selection
por: Yu, Shenglong, et al.
Publicado: (2018) -
Laplacian mixture modeling for network analysis and unsupervised learning on graphs
por: Korenblum, Daniel
Publicado: (2018) -
Modified iterative versus Laplacian Landau gauge in compact U(1) theory
por: Durr, Stephan, et al.
Publicado: (2002) -
Laplacian Scores-Based Feature Reduction in IoT Systems for Agricultural Monitoring and Decision-Making Support
por: Tsapparellas, Giorgos, et al.
Publicado: (2020) -
Group Based Unsupervised Feature Selection
por: Perera, Kushani, et al.
Publicado: (2020)