Cargando…
Ensemble Learning Using Individual Neonatal Data for Seizure Detection
Objective: Sharing medical data between institutions is difficult in practice due to data protection laws and official procedures within institutions. Therefore, most existing algorithms are trained on relatively small electroencephalogram (EEG) data sets which is likely to be detrimental to predict...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484737/ https://www.ncbi.nlm.nih.gov/pubmed/36147876 http://dx.doi.org/10.1109/JTEHM.2022.3201167 |
Ejemplares similares
-
Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data
por: Abualsaud, Khalid, et al.
Publicado: (2015) -
Detection of epileptic seizures through EEG signals using entropy features and ensemble learning
por: Dastgoshadeh, Mahshid, et al.
Publicado: (2023) -
Cardiovascular Disease Detection using Ensemble Learning
por: Alqahtani, Abdullah, et al.
Publicado: (2022) -
Interobserver agreement for neonatal seizure detection using multichannel EEG
por: Stevenson, Nathan J., et al.
Publicado: (2015) -
A deep learning framework for epileptic seizure detection based on neonatal EEG signals
por: Gramacki, Artur, et al.
Publicado: (2022)