Cargando…
Deep Reinforcement Learning-Based Trading Strategy for Load Aggregators on Price-Responsive Demand
With the development of the Internet of things and smart grid technologies, modern electricity markets seamlessly connect demand response to the spot market through price-responsive loads, in which the trading strategy of load aggregators plays a crucial role in profit capture. In this study, we pro...
Autores principales: | Yang, Guang, Du, Songhuai, Duan, Qingling, Su, Juan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484940/ https://www.ncbi.nlm.nih.gov/pubmed/36131901 http://dx.doi.org/10.1155/2022/6884956 |
Ejemplares similares
-
Short-Term Demand Forecasting Method in Power Markets Based on the KSVM–TCN–GBRT
por: Yang, Guang, et al.
Publicado: (2022) -
Structural break-aware pairs trading strategy using deep reinforcement learning
por: Lu, Jing-You, et al.
Publicado: (2021) -
Deep Reinforcement Learning Microgrid Optimization Strategy Considering Priority Flexible Demand Side
por: Sang, Jinsong, et al.
Publicado: (2022) -
Option Trading: Pricing and Volatility Strategies and Techniques
por: SINCLAIR, EUAN
Publicado: (2010) -
Trading weekly options: pricing characteristics and short-term trading strategies
por: Rhoads, Russell
Publicado: (2014)