Cargando…

The Na(+),K(+)-ATPase in complex with beryllium fluoride mimics an ATPase phosphorylated state

The Na(+),K(+)-ATPase generates electrochemical gradients of Na(+) and K(+) across the plasma membrane via a functional cycle that includes various phosphoenzyme intermediates. However, the structure and function of these intermediates and how metal fluorides mimick them require further investigatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Fruergaard, Marlene U., Dach, Ingrid, Andersen, Jacob L., Ozol, Mette, Shahsavar, Azadeh, Quistgaard, Esben M., Poulsen, Hanne, Fedosova, Natalya U., Nissen, Poul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485054/
https://www.ncbi.nlm.nih.gov/pubmed/35926706
http://dx.doi.org/10.1016/j.jbc.2022.102317
_version_ 1784792007013564416
author Fruergaard, Marlene U.
Dach, Ingrid
Andersen, Jacob L.
Ozol, Mette
Shahsavar, Azadeh
Quistgaard, Esben M.
Poulsen, Hanne
Fedosova, Natalya U.
Nissen, Poul
author_facet Fruergaard, Marlene U.
Dach, Ingrid
Andersen, Jacob L.
Ozol, Mette
Shahsavar, Azadeh
Quistgaard, Esben M.
Poulsen, Hanne
Fedosova, Natalya U.
Nissen, Poul
author_sort Fruergaard, Marlene U.
collection PubMed
description The Na(+),K(+)-ATPase generates electrochemical gradients of Na(+) and K(+) across the plasma membrane via a functional cycle that includes various phosphoenzyme intermediates. However, the structure and function of these intermediates and how metal fluorides mimick them require further investigation. Here, we describe a 4.0 Å resolution crystal structure and functional properties of the pig kidney Na(+),K(+)-ATPase stabilized by the inhibitor beryllium fluoride (denoted E2–BeF(x)). E2–BeF(x) is expected to mimic properties of the E2P phosphoenzyme, yet with unknown characteristics of ion and ligand binding. The structure resembles the E2P form obtained by phosphorylation from inorganic phosphate (P(i)) and stabilized by cardiotonic steroids, including a low-affinity Mg(2+) site near ion binding site II. Our anomalous Fourier analysis of the crystals soaked in Rb(+) (a K(+) congener) followed by a low-resolution rigid-body refinement (6.9–7.5 Å) revealed preocclusion transitions leading to activation of the dephosphorylation reaction. We show that the Mg(2+) location indicates a site of initial K(+) recognition and acceptance upon binding to the outward-open E2P state after Na(+) release. Furthermore, using binding and activity studies, we find that the BeF(x)-inhibited enzyme is also able to bind ADP/ATP and Na(+). These results relate the E2–BeF(x) complex to a transient K(+)- and ADP-sensitive E∗P intermediate of the functional cycle of the Na(+),K(+)-ATPase, prior to E2P.
format Online
Article
Text
id pubmed-9485054
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-94850542022-09-26 The Na(+),K(+)-ATPase in complex with beryllium fluoride mimics an ATPase phosphorylated state Fruergaard, Marlene U. Dach, Ingrid Andersen, Jacob L. Ozol, Mette Shahsavar, Azadeh Quistgaard, Esben M. Poulsen, Hanne Fedosova, Natalya U. Nissen, Poul J Biol Chem Research Article The Na(+),K(+)-ATPase generates electrochemical gradients of Na(+) and K(+) across the plasma membrane via a functional cycle that includes various phosphoenzyme intermediates. However, the structure and function of these intermediates and how metal fluorides mimick them require further investigation. Here, we describe a 4.0 Å resolution crystal structure and functional properties of the pig kidney Na(+),K(+)-ATPase stabilized by the inhibitor beryllium fluoride (denoted E2–BeF(x)). E2–BeF(x) is expected to mimic properties of the E2P phosphoenzyme, yet with unknown characteristics of ion and ligand binding. The structure resembles the E2P form obtained by phosphorylation from inorganic phosphate (P(i)) and stabilized by cardiotonic steroids, including a low-affinity Mg(2+) site near ion binding site II. Our anomalous Fourier analysis of the crystals soaked in Rb(+) (a K(+) congener) followed by a low-resolution rigid-body refinement (6.9–7.5 Å) revealed preocclusion transitions leading to activation of the dephosphorylation reaction. We show that the Mg(2+) location indicates a site of initial K(+) recognition and acceptance upon binding to the outward-open E2P state after Na(+) release. Furthermore, using binding and activity studies, we find that the BeF(x)-inhibited enzyme is also able to bind ADP/ATP and Na(+). These results relate the E2–BeF(x) complex to a transient K(+)- and ADP-sensitive E∗P intermediate of the functional cycle of the Na(+),K(+)-ATPase, prior to E2P. American Society for Biochemistry and Molecular Biology 2022-08-02 /pmc/articles/PMC9485054/ /pubmed/35926706 http://dx.doi.org/10.1016/j.jbc.2022.102317 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Fruergaard, Marlene U.
Dach, Ingrid
Andersen, Jacob L.
Ozol, Mette
Shahsavar, Azadeh
Quistgaard, Esben M.
Poulsen, Hanne
Fedosova, Natalya U.
Nissen, Poul
The Na(+),K(+)-ATPase in complex with beryllium fluoride mimics an ATPase phosphorylated state
title The Na(+),K(+)-ATPase in complex with beryllium fluoride mimics an ATPase phosphorylated state
title_full The Na(+),K(+)-ATPase in complex with beryllium fluoride mimics an ATPase phosphorylated state
title_fullStr The Na(+),K(+)-ATPase in complex with beryllium fluoride mimics an ATPase phosphorylated state
title_full_unstemmed The Na(+),K(+)-ATPase in complex with beryllium fluoride mimics an ATPase phosphorylated state
title_short The Na(+),K(+)-ATPase in complex with beryllium fluoride mimics an ATPase phosphorylated state
title_sort na(+),k(+)-atpase in complex with beryllium fluoride mimics an atpase phosphorylated state
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485054/
https://www.ncbi.nlm.nih.gov/pubmed/35926706
http://dx.doi.org/10.1016/j.jbc.2022.102317
work_keys_str_mv AT fruergaardmarleneu thenakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT dachingrid thenakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT andersenjacobl thenakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT ozolmette thenakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT shahsavarazadeh thenakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT quistgaardesbenm thenakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT poulsenhanne thenakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT fedosovanatalyau thenakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT nissenpoul thenakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT fruergaardmarleneu nakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT dachingrid nakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT andersenjacobl nakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT ozolmette nakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT shahsavarazadeh nakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT quistgaardesbenm nakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT poulsenhanne nakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT fedosovanatalyau nakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate
AT nissenpoul nakatpaseincomplexwithberylliumfluoridemimicsanatpasephosphorylatedstate