Cargando…

Deep eutectic solvent-assisted fabrication of zirconium phytate thin nanosheets for important biomass transformations

Utilization of naturally occurring resources to construct functional catalytic materials is significantly important, and facile and environmental-benign strategies are highly desired to afford the materials having a specific structure and good catalytic activity. Herein, we reported an innovative de...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Jinliang, Li, Yanan, Xue, Zhimin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485070/
https://www.ncbi.nlm.nih.gov/pubmed/36147961
http://dx.doi.org/10.1016/j.isci.2022.105039
Descripción
Sumario:Utilization of naturally occurring resources to construct functional catalytic materials is significantly important, and facile and environmental-benign strategies are highly desired to afford the materials having a specific structure and good catalytic activity. Herein, we reported an innovative deep eutectic solvent (DES)-assisted strategy to synthesize zirconium phytate with a thin nanosheet structure (denoted as Zr-Phy-DES) using plant-originated phytic acid (PhyA) as the renewable building block. This strategy was eco-friendly and adjustable owing to the designability of DESs. The Zr-Phy-DES as an acidic catalyst showed high activity on two important biomass transformations, i.e., dehydration of carbohydrates and Meerwein-Ponndorf-Verley reduction of ethyl levulinate. Interestingly, Zr-Phy-DES showed higher catalytic performance than the zirconium phytates prepared in ethylene glycol and N,N-dimethylformamide, confirming the advantage of DESs for preparing functional materials. Notably, the unique feature of this proposed strategy is that renewable catalysts are prepared in an environmental-benign solvent for efficiently catalyzing biomass transformation.