Cargando…
Geometry-informed irreversible perturbations for accelerated convergence of Langevin dynamics
We introduce a novel geometry-informed irreversible perturbation that accelerates convergence of the Langevin algorithm for Bayesian computation. It is well documented that there exist perturbations to the Langevin dynamics that preserve its invariant measure while accelerating its convergence. Irre...
Autores principales: | Zhang, Benjamin J., Marzouk, Youssef M., Spiliopoulos, Konstantinos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485103/ https://www.ncbi.nlm.nih.gov/pubmed/36156938 http://dx.doi.org/10.1007/s11222-022-10147-6 |
Ejemplares similares
-
Using Perturbed Underdamped Langevin Dynamics to Efficiently Sample from Probability Distributions
por: Duncan, A. B., et al.
Publicado: (2017) -
The Langevin and generalised Langevin approach to the dynamics of atomic, polymeric and colloidal systems
por: Snook, Ian
Publicado: (2007) -
Convergence Rates for the Constrained Sampling via Langevin Monte Carlo
por: Zhu, Yuanzheng
Publicado: (2023) -
Langevin formulation of quantum dynamics
por: Roncadelli, Marco
Publicado: (1991) -
Conformational Transitions of Amyloid-β: A Langevin
and Generalized Langevin Dynamics Simulation Study
por: Singh, Vishal, et al.
Publicado: (2021)