Cargando…
Ransomware detection using deep learning based unsupervised feature extraction and a cost sensitive Pareto Ensemble classifier
Ransomware attacks pose a serious threat to Internet resources due to their far-reaching effects. It’s Zero-day variants are even more hazardous, as less is known about them. In this regard, when used for ransomware attack detection, conventional machine learning approaches may become data-dependent...
Autores principales: | Zahoora, Umme, Khan, Asifullah, Rajarajan, Muttukrishnan, Khan, Saddam Hussain, Asam, Muhammad, Jamal, Tauseef |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485118/ https://www.ncbi.nlm.nih.gov/pubmed/36123364 http://dx.doi.org/10.1038/s41598-022-19443-7 |
Ejemplares similares
-
IoT malware detection architecture using a novel channel boosted and squeezed CNN
por: Asam, Muhammad, et al.
Publicado: (2022) -
A New Deep Hybrid Boosted and Ensemble Learning-Based Brain Tumor Analysis Using MRI
por: Zahoor, Mirza Mumtaz, et al.
Publicado: (2022) -
Preventing ransomware: understand, prevent, and remediate ransomware attacks
por: Mohanta, Abhijit, et al.
Publicado: (2018) -
Ransomware and Privileges
por: Haber, Morey J.
Publicado: (2020) -
Coronavirus disease analysis using chest X-ray images and a novel deep convolutional neural network
por: Khan, Saddam Hussain, et al.
Publicado: (2021)