Cargando…
Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia
Relapsed or refractory pediatric acute myeloid leukemia (AML) is associated with poor outcomes and relapse risk prediction approaches have not changed significantly in decades. To build a robust transcriptional risk prediction model for pediatric AML, we perform RNA-sequencing on 1503 primary diagno...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485122/ https://www.ncbi.nlm.nih.gov/pubmed/36123353 http://dx.doi.org/10.1038/s41467-022-33244-6 |
_version_ | 1784792021812117504 |
---|---|
author | Huang, Benjamin J. Smith, Jenny L. Farrar, Jason E. Wang, Yi-Cheng Umeda, Masayuki Ries, Rhonda E. Leonti, Amanda R. Crowgey, Erin Furlan, Scott N. Tarlock, Katherine Armendariz, Marcos Liu, Yanling Shaw, Timothy I. Wei, Lisa Gerbing, Robert B. Cooper, Todd M. Gamis, Alan S. Aplenc, Richard Kolb, E. Anders Rubnitz, Jeffrey Ma, Jing Klco, Jeffery M. Ma, Xiaotu Alonzo, Todd A. Triche, Timothy Meshinchi, Soheil |
author_facet | Huang, Benjamin J. Smith, Jenny L. Farrar, Jason E. Wang, Yi-Cheng Umeda, Masayuki Ries, Rhonda E. Leonti, Amanda R. Crowgey, Erin Furlan, Scott N. Tarlock, Katherine Armendariz, Marcos Liu, Yanling Shaw, Timothy I. Wei, Lisa Gerbing, Robert B. Cooper, Todd M. Gamis, Alan S. Aplenc, Richard Kolb, E. Anders Rubnitz, Jeffrey Ma, Jing Klco, Jeffery M. Ma, Xiaotu Alonzo, Todd A. Triche, Timothy Meshinchi, Soheil |
author_sort | Huang, Benjamin J. |
collection | PubMed |
description | Relapsed or refractory pediatric acute myeloid leukemia (AML) is associated with poor outcomes and relapse risk prediction approaches have not changed significantly in decades. To build a robust transcriptional risk prediction model for pediatric AML, we perform RNA-sequencing on 1503 primary diagnostic samples. While a 17 gene leukemia stem cell signature (LSC17) is predictive in our aggregated pediatric study population, LSC17 is no longer predictive within established cytogenetic and molecular (cytomolecular) risk groups. Therefore, we identify distinct LSC signatures on the basis of AML cytomolecular subtypes (LSC47) that were more predictive than LSC17. Based on these findings, we build a robust relapse prediction model within a training cohort and then validate it within independent cohorts. Here, we show that LSC47 increases the predictive power of conventional risk stratification and that applying biomarkers in a manner that is informed by cytomolecular profiling outperforms a uniform biomarker approach. |
format | Online Article Text |
id | pubmed-9485122 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-94851222022-09-21 Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia Huang, Benjamin J. Smith, Jenny L. Farrar, Jason E. Wang, Yi-Cheng Umeda, Masayuki Ries, Rhonda E. Leonti, Amanda R. Crowgey, Erin Furlan, Scott N. Tarlock, Katherine Armendariz, Marcos Liu, Yanling Shaw, Timothy I. Wei, Lisa Gerbing, Robert B. Cooper, Todd M. Gamis, Alan S. Aplenc, Richard Kolb, E. Anders Rubnitz, Jeffrey Ma, Jing Klco, Jeffery M. Ma, Xiaotu Alonzo, Todd A. Triche, Timothy Meshinchi, Soheil Nat Commun Article Relapsed or refractory pediatric acute myeloid leukemia (AML) is associated with poor outcomes and relapse risk prediction approaches have not changed significantly in decades. To build a robust transcriptional risk prediction model for pediatric AML, we perform RNA-sequencing on 1503 primary diagnostic samples. While a 17 gene leukemia stem cell signature (LSC17) is predictive in our aggregated pediatric study population, LSC17 is no longer predictive within established cytogenetic and molecular (cytomolecular) risk groups. Therefore, we identify distinct LSC signatures on the basis of AML cytomolecular subtypes (LSC47) that were more predictive than LSC17. Based on these findings, we build a robust relapse prediction model within a training cohort and then validate it within independent cohorts. Here, we show that LSC47 increases the predictive power of conventional risk stratification and that applying biomarkers in a manner that is informed by cytomolecular profiling outperforms a uniform biomarker approach. Nature Publishing Group UK 2022-09-19 /pmc/articles/PMC9485122/ /pubmed/36123353 http://dx.doi.org/10.1038/s41467-022-33244-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Huang, Benjamin J. Smith, Jenny L. Farrar, Jason E. Wang, Yi-Cheng Umeda, Masayuki Ries, Rhonda E. Leonti, Amanda R. Crowgey, Erin Furlan, Scott N. Tarlock, Katherine Armendariz, Marcos Liu, Yanling Shaw, Timothy I. Wei, Lisa Gerbing, Robert B. Cooper, Todd M. Gamis, Alan S. Aplenc, Richard Kolb, E. Anders Rubnitz, Jeffrey Ma, Jing Klco, Jeffery M. Ma, Xiaotu Alonzo, Todd A. Triche, Timothy Meshinchi, Soheil Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia |
title | Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia |
title_full | Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia |
title_fullStr | Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia |
title_full_unstemmed | Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia |
title_short | Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia |
title_sort | integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485122/ https://www.ncbi.nlm.nih.gov/pubmed/36123353 http://dx.doi.org/10.1038/s41467-022-33244-6 |
work_keys_str_mv | AT huangbenjaminj integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT smithjennyl integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT farrarjasone integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT wangyicheng integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT umedamasayuki integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT riesrhondae integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT leontiamandar integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT crowgeyerin integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT furlanscottn integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT tarlockkatherine integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT armendarizmarcos integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT liuyanling integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT shawtimothyi integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT weilisa integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT gerbingrobertb integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT coopertoddm integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT gamisalans integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT aplencrichard integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT kolbeanders integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT rubnitzjeffrey integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT majing integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT klcojefferym integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT maxiaotu integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT alonzotodda integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT trichetimothy integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia AT meshinchisoheil integratedstemcellsignatureandcytomolecularriskdeterminationinpediatricacutemyeloidleukemia |