Cargando…
Identification of spatially variable genes with graph cuts
Single-cell gene expression data with positional information is critical to dissect mechanisms and architectures of multicellular organisms, but the potential is limited by the scalability of current data analysis strategies. Here, we present scGCO, a method based on fast optimization of hidden Mark...
Autores principales: | Zhang, Ke, Feng, Wanwan, Wang, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485129/ https://www.ncbi.nlm.nih.gov/pubmed/36123336 http://dx.doi.org/10.1038/s41467-022-33182-3 |
Ejemplares similares
-
Data on cut-edge for spatial clustering based on proximity graphs
por: Aksac, Alper, et al.
Publicado: (2019) -
Iterative Min Cut Clustering Based on Graph Cuts
por: Liu, Bowen, et al.
Publicado: (2021) -
SpatialDE: identification of spatially variable genes
por: Svensson, Valentine, et al.
Publicado: (2018) -
Faster Cut Sparsification of Weighted Graphs
por: Forster, Sebastian, et al.
Publicado: (2022) -
On the nullity of a graph with cut-points()
por: Gong, Shi-Cai, et al.
Publicado: (2012)