Cargando…
Artificial intelligence software available for medical devices: surgical phase recognition in laparoscopic cholecystectomy
BACKGROUND: Surgical process modeling automatically identifies surgical phases, and further improvement in recognition accuracy is expected with deep learning. Surgical tool or time series information has been used to improve the recognition accuracy of a model. However, it is difficult to collect t...
Autores principales: | Shinozuka, Ken’ichi, Turuda, Sayaka, Fujinaga, Atsuro, Nakanuma, Hiroaki, Kawamura, Masahiro, Matsunobu, Yusuke, Tanaka, Yuki, Kamiyama, Toshiya, Ebe, Kohei, Endo, Yuichi, Etoh, Tsuyoshi, Inomata, Masafumi, Tokuyasu, Tatsushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485170/ https://www.ncbi.nlm.nih.gov/pubmed/35266049 http://dx.doi.org/10.1007/s00464-022-09160-7 |
Ejemplares similares
-
Development of an artificial intelligence system using deep learning to indicate anatomical landmarks during laparoscopic cholecystectomy
por: Tokuyasu, Tatsushi, et al.
Publicado: (2020) -
Impact of AI system on recognition for anatomical landmarks related to reducing bile duct injury during laparoscopic cholecystectomy
por: Endo, Yuichi, et al.
Publicado: (2023) -
A case of ruptured mucinous cystadenoma of the pancreas with recurrence-free survival for 8 years
por: Fujinaga, Atsuro, et al.
Publicado: (2020) -
Glucose metabolic upregulation via phosphorylation of S6 ribosomal protein affects tumor progression in distal cholangiocarcinoma
por: Fujinaga, Atsuro, et al.
Publicado: (2023) -
Appropriate indications for laparoscopic repeat hepatectomy
por: Masuda, Takashi, et al.
Publicado: (2023)