Cargando…

Whole-transcriptome RNA sequencing reveals the global molecular responses and circRNA/lncRNA-miRNA-mRNA ceRNA regulatory network in chicken fat deposition

Fat deposition is a vital factor affecting the economics of poultry production. Numerous studies on fat deposition have been done. However, the molecular regulatory mechanism is still unclear. In the present study, the whole-transcriptome RNA sequencing in abdominal fat, back skin, and liver both hi...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Cong, Sun, Tiantian, Yang, Zhuliang, Zou, Leqin, Deng, Jixian, Yang, Xiurong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485216/
https://www.ncbi.nlm.nih.gov/pubmed/36116349
http://dx.doi.org/10.1016/j.psj.2022.102121
Descripción
Sumario:Fat deposition is a vital factor affecting the economics of poultry production. Numerous studies on fat deposition have been done. However, the molecular regulatory mechanism is still unclear. In the present study, the whole-transcriptome RNA sequencing in abdominal fat, back skin, and liver both high- and low-abdominal fat groups was used to uncover the competitive endogenous RNA (ceRNA) regulation network related to chicken fat deposition. The results showed that differentially expressed (DE) genes in abdominal fat, back skin, liver were 1207(784 mRNAs, 330 lncRNAs, 41 circRNAs, 52 miRNAs), 860 (607 mRNAs, 166 lncRNAs, 26 circRNAs, 61 miRNAs), and 923 (501 mRNAs, 262 lncRNAs, 15 circRNAs, 145 miRNAs), respectively. The ceRNA regulatory network analysis indicated that the fatty acid metabolic process, monocarboxylic acid metabolic process, carboxylic acid metabolic process, glycerolipid metabolism, fatty acid metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling pathway took part in chicken fat deposition. Meanwhile, we scan the important genes, FADS2, HSD17B12, ELOVL5, AKR1E2, DGKQ, GPAM, PLIN2, which were regulated by gga-miR-460b-5p, gga-miR-199-5p, gga-miR-7470-3p, gga-miR-6595-5p, gga-miR-101-2-5p. While these miRNAs were competitive combined by lncRNAs including MSTRG.18043, MSTRG.7738, MSTRG.21310, MSTRG.19577, and circRNAs including novel_circ_PTPN2, novel_circ_CTNNA1, novel_circ_PTPRD. This finding provides new insights into the regulatory mechanism of mRNA, miRNA, lncRNA, and circRNA in chicken fat deposition.