Cargando…

Causal contribution of optic flow signal in Macaque extrastriate visual cortex for roll perception

Optic flow is a powerful cue for inferring self-motion status which is critical for postural control, spatial orientation, locomotion and navigation. In primates, neurons in extrastriate visual cortex (MSTd) are predominantly modulated by high-order optic flow patterns (e.g., spiral), yet a function...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wenhao, Lu, Jianyu, Zhu, Zikang, Gu, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485245/
https://www.ncbi.nlm.nih.gov/pubmed/36123363
http://dx.doi.org/10.1038/s41467-022-33245-5
Descripción
Sumario:Optic flow is a powerful cue for inferring self-motion status which is critical for postural control, spatial orientation, locomotion and navigation. In primates, neurons in extrastriate visual cortex (MSTd) are predominantly modulated by high-order optic flow patterns (e.g., spiral), yet a functional link to direct perception is lacking. Here, we applied electrical microstimulation to selectively manipulate population of MSTd neurons while macaques discriminated direction of rotation around line-of-sight (roll) or direction of linear-translation (heading), two tasks which were orthogonal in 3D spiral coordinate using a four-alternative-forced-choice paradigm. Microstimulation frequently biased animal’s roll perception towards coded labeled-lines of the artificial-stimulated neurons in either context with spiral or pure-rotation stimuli. Choice frequency was also altered between roll and translation flow-pattern. Our results provide direct causal-link evidence supporting that roll signals in MSTd, despite often mixed with translation signals, can be extracted by downstream areas for perception of rotation relative to gravity-vertical.