Cargando…
Combined Features in Region of Interest for Brain Tumor Segmentation
Diagnosis of brain tumor gliomas is a challenging task in medical image analysis due to its complexity, the less regularity of tumor structures, and the diversity of tissue textures and shapes. Semantic segmentation approaches using deep learning have consistently outperformed the previous methods i...
Autores principales: | Alqazzaz, Salma, Sun, Xianfang, Nokes, Len DM, Yang, Hong, Yang, Yingxia, Xu, Ronghua, Zhang, Yanqiang, Yang, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485383/ https://www.ncbi.nlm.nih.gov/pubmed/35293605 http://dx.doi.org/10.1007/s10278-022-00602-1 |
Ejemplares similares
-
Brain tumor segmentation based on region of interest-aided localization and segmentation U-Net
por: Li, Shidong, et al.
Publicado: (2022) -
Assessing Region of Interest Schemes for the Corticospinal Tract in Patients With Brain Tumors
por: Niu, Chen, et al.
Publicado: (2016) -
Brain Tumor Segmentation via Multi-Modalities Interactive Feature Learning
por: Wang, Bo, et al.
Publicado: (2021) -
Edge-enhanced instance segmentation by grid regions of interest
por: Gao, Ying, et al.
Publicado: (2022) -
Segmentation of Regions of Interest Using Active Contours with SPF Function
por: Akram, Farhan, et al.
Publicado: (2015)