Cargando…

Estimating the relative proportions of SARS-CoV-2 haplotypes from wastewater samples

Wastewater surveillance has become essential for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The quantification of SARS-CoV-2 RNA in wastewater correlates with the coronavirus disease 2019 (COVID-19) caseload in a community. However, estimating the proporti...

Descripción completa

Detalles Bibliográficos
Autores principales: Pipes, Lenore, Chen, Zihao, Afanaseva, Svetlana, Nielsen, Rasmus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485417/
https://www.ncbi.nlm.nih.gov/pubmed/36159190
http://dx.doi.org/10.1016/j.crmeth.2022.100313
_version_ 1784792064247988224
author Pipes, Lenore
Chen, Zihao
Afanaseva, Svetlana
Nielsen, Rasmus
author_facet Pipes, Lenore
Chen, Zihao
Afanaseva, Svetlana
Nielsen, Rasmus
author_sort Pipes, Lenore
collection PubMed
description Wastewater surveillance has become essential for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The quantification of SARS-CoV-2 RNA in wastewater correlates with the coronavirus disease 2019 (COVID-19) caseload in a community. However, estimating the proportions of different SARS-CoV-2 haplotypes has remained technically difficult. We present a phylogenetic imputation method for improving the SARS-CoV-2 reference database and a method for estimating the relative proportions of SARS-CoV-2 haplotypes from wastewater samples. The phylogenetic imputation method uses the global SARS-CoV-2 phylogeny and imputes based on the maximum of the posterior probability of each nucleotide. We show that the imputation method has error rates comparable to, or lower than, typical sequencing error rates, which substantially improves the reference database and allows for accurate inferences of haplotype composition. Our method for estimating relative proportions of haplotypes uses an initial step to remove unlikely haplotypes and an expectation maximization (EM) algorithm for obtaining maximum likelihood estimates of the proportions of different haplotypes in a sample. Using simulations with a reference database of >3 million SARS-CoV-2 genomes, we show that the estimated proportions reflect the true proportions given sufficiently high sequencing depth.
format Online
Article
Text
id pubmed-9485417
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-94854172022-09-21 Estimating the relative proportions of SARS-CoV-2 haplotypes from wastewater samples Pipes, Lenore Chen, Zihao Afanaseva, Svetlana Nielsen, Rasmus Cell Rep Methods Article Wastewater surveillance has become essential for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The quantification of SARS-CoV-2 RNA in wastewater correlates with the coronavirus disease 2019 (COVID-19) caseload in a community. However, estimating the proportions of different SARS-CoV-2 haplotypes has remained technically difficult. We present a phylogenetic imputation method for improving the SARS-CoV-2 reference database and a method for estimating the relative proportions of SARS-CoV-2 haplotypes from wastewater samples. The phylogenetic imputation method uses the global SARS-CoV-2 phylogeny and imputes based on the maximum of the posterior probability of each nucleotide. We show that the imputation method has error rates comparable to, or lower than, typical sequencing error rates, which substantially improves the reference database and allows for accurate inferences of haplotype composition. Our method for estimating relative proportions of haplotypes uses an initial step to remove unlikely haplotypes and an expectation maximization (EM) algorithm for obtaining maximum likelihood estimates of the proportions of different haplotypes in a sample. Using simulations with a reference database of >3 million SARS-CoV-2 genomes, we show that the estimated proportions reflect the true proportions given sufficiently high sequencing depth. Elsevier 2022-09-20 /pmc/articles/PMC9485417/ /pubmed/36159190 http://dx.doi.org/10.1016/j.crmeth.2022.100313 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pipes, Lenore
Chen, Zihao
Afanaseva, Svetlana
Nielsen, Rasmus
Estimating the relative proportions of SARS-CoV-2 haplotypes from wastewater samples
title Estimating the relative proportions of SARS-CoV-2 haplotypes from wastewater samples
title_full Estimating the relative proportions of SARS-CoV-2 haplotypes from wastewater samples
title_fullStr Estimating the relative proportions of SARS-CoV-2 haplotypes from wastewater samples
title_full_unstemmed Estimating the relative proportions of SARS-CoV-2 haplotypes from wastewater samples
title_short Estimating the relative proportions of SARS-CoV-2 haplotypes from wastewater samples
title_sort estimating the relative proportions of sars-cov-2 haplotypes from wastewater samples
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485417/
https://www.ncbi.nlm.nih.gov/pubmed/36159190
http://dx.doi.org/10.1016/j.crmeth.2022.100313
work_keys_str_mv AT pipeslenore estimatingtherelativeproportionsofsarscov2haplotypesfromwastewatersamples
AT chenzihao estimatingtherelativeproportionsofsarscov2haplotypesfromwastewatersamples
AT afanasevasvetlana estimatingtherelativeproportionsofsarscov2haplotypesfromwastewatersamples
AT nielsenrasmus estimatingtherelativeproportionsofsarscov2haplotypesfromwastewatersamples