Cargando…
E-GCS: Detection of COVID-19 through classification by attention bottleneck residual network
BACKGROUND: Recently, the coronavirus disease 2019 (COVID-19) has caused mortality of many people globally. Thus, there existed a need to detect this disease to prevent its further spread. Hence, the study aims to predict COVID-19 infected patients based on deep learning (DL) and image processing. O...
Autores principales: | Ahila, T., Subhajini, A.C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485443/ https://www.ncbi.nlm.nih.gov/pubmed/36158870 http://dx.doi.org/10.1016/j.engappai.2022.105398 |
Ejemplares similares
-
Real-time lane detection model based on non bottleneck skip residual connections and attention pyramids
por: Chen, Lichao, et al.
Publicado: (2021) -
Common Data Elements for COVID-19 Neuroimaging: A GCS-NeuroCOVID Proposal
por: Edlow, Brian L., et al.
Publicado: (2021) -
COVID 19 and the oxygen bottleneck
Publicado: (2020) -
Attentional Mechanisms and Improved Residual Networks for Diabetic Retinopathy Severity Classification
por: Cao, Juan, et al.
Publicado: (2022) -
Spatial attention-based residual network for human burn identification and classification
por: Yadav, D. P., et al.
Publicado: (2023)