Cargando…
Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis
BACKGROUND: Accurate identification of ovarian cancer (OC) is of paramount importance in clinical treatment success. Artificial intelligence (AI) is a potentially reliable assistant for the medical imaging recognition. We systematically review articles on the diagnostic performance of AI in OC from...
Autores principales: | Xu, He-Li, Gong, Ting-Ting, Liu, Fang-Hua, Chen, Hong-Yu, Xiao, Qian, Hou, Yang, Huang, Ying, Sun, Hong-Zan, Shi, Yu, Gao, Song, Lou, Yan, Chang, Qing, Zhao, Yu-Hong, Gao, Qing-Lei, Wu, Qi-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486055/ https://www.ncbi.nlm.nih.gov/pubmed/36147628 http://dx.doi.org/10.1016/j.eclinm.2022.101662 |
Ejemplares similares
-
Post-Diagnostic Beta Blocker Use and Prognosis of Ovarian Cancer: A Systematic Review and Meta-Analysis of 11 Cohort Studies With 20,274 Patients
por: Wen, Zhao-Yan, et al.
Publicado: (2021) -
Evaluation of physician performance using a concurrent-read artificial intelligence system to support breast ultrasound interpretation
por: Lai, Yi-Chen, et al.
Publicado: (2022) -
Artificial intelligence in pediatrics
por: Li, Ya-Wen, et al.
Publicado: (2020) -
Identification of pathological subtypes of early lung adenocarcinoma based on artificial intelligence parameters and CT signs
por: Fang, Weiyuan, et al.
Publicado: (2022) -
Pre-diagnosis Dietary One-Carbon Metabolism Micronutrients Consumption and Ovarian Cancer Survival: A Prospective Cohort Study
por: Xu, He-Li, et al.
Publicado: (2022)