Cargando…
Glomerular disease classification and lesion identification by machine learning
BACKGROUND: Classification of glomerular diseases and identification of glomerular lesions require careful morphological examination by experienced nephropathologists, which is labor-intensive, time-consuming, and prone to interobserver variability. In this regard, recent advance in machine learning...
Autores principales: | Yang, Cheng-Kun, Lee, Ching-Yi, Wang, Hsiang-Sheng, Huang, Shun-Chen, Liang, Peir-In, Chen, Jung-Sheng, Kuo, Chang-Fu, Tu, Kun-Hua, Yeh, Chao-Yuan, Chen, Tai-Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chang Gung University
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486238/ https://www.ncbi.nlm.nih.gov/pubmed/34506971 http://dx.doi.org/10.1016/j.bj.2021.08.011 |
Ejemplares similares
-
Identification of glomerular lesions and intrinsic glomerular cell types in kidney diseases via deep learning
por: Zeng, Caihong, et al.
Publicado: (2020) -
Machine Learning Based on Morphological Features Enables Classification of Primary Intestinal T-Cell Lymphomas
por: Yu, Wei-Hsiang, et al.
Publicado: (2021) -
Successful Identification of Nasopharyngeal Carcinoma in Nasopharyngeal Biopsies Using Deep Learning
por: Chuang, Wen-Yu, et al.
Publicado: (2020) -
Machine learning for morbid glomerular hypertrophy
por: Ushio, Yusuke, et al.
Publicado: (2022) -
A Microfluidic Platform for Investigating Transmembrane Pressure-Induced Glomerular Leakage
por: Chen, Ting-Hsuan, et al.
Publicado: (2018)