Cargando…

Detection of lesions in the optic nerve with magnetic resonance imaging using a 3D convolutional neural network

BACKGROUND: Optic neuritis (ON) is one of the first manifestations of multiple sclerosis, a disabling disease with rising prevalence. Detecting optic nerve lesions could be a relevant diagnostic marker in patients with multiple sclerosis. OBJECTIVES: We aim to create an automated, interpretable meth...

Descripción completa

Detalles Bibliográficos
Autores principales: Martí-Juan, Gerard, Frías, Marcos, Garcia-Vidal, Aran, Vidal-Jordana, Angela, Alberich, Manel, Calderon, Willem, Piella, Gemma, Camara, Oscar, Montalban, Xavier, Sastre-Garriga, Jaume, Rovira, Àlex, Pareto, Deborah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486565/
https://www.ncbi.nlm.nih.gov/pubmed/36126515
http://dx.doi.org/10.1016/j.nicl.2022.103187
_version_ 1784792311251599360
author Martí-Juan, Gerard
Frías, Marcos
Garcia-Vidal, Aran
Vidal-Jordana, Angela
Alberich, Manel
Calderon, Willem
Piella, Gemma
Camara, Oscar
Montalban, Xavier
Sastre-Garriga, Jaume
Rovira, Àlex
Pareto, Deborah
author_facet Martí-Juan, Gerard
Frías, Marcos
Garcia-Vidal, Aran
Vidal-Jordana, Angela
Alberich, Manel
Calderon, Willem
Piella, Gemma
Camara, Oscar
Montalban, Xavier
Sastre-Garriga, Jaume
Rovira, Àlex
Pareto, Deborah
author_sort Martí-Juan, Gerard
collection PubMed
description BACKGROUND: Optic neuritis (ON) is one of the first manifestations of multiple sclerosis, a disabling disease with rising prevalence. Detecting optic nerve lesions could be a relevant diagnostic marker in patients with multiple sclerosis. OBJECTIVES: We aim to create an automated, interpretable method for optic nerve lesion detection from MRI scans. MATERIALS AND METHODS: We present a 3D convolutional neural network (CNN) model that learns to detect optic nerve lesions based on T2-weighted fat-saturated MRI scans. We validated our system on two different datasets (N = 107 and 62) and interpreted the behaviour of the model using saliency maps. RESULTS: The model showed good performance (68.11% balanced accuracy) that generalizes to unseen data (64.11%). The developed network focuses its attention to the areas that correspond to lesions in the optic nerve. CONCLUSIONS: The method shows robustness and, when using only a single imaging sequence, its performance is not far from diagnosis by trained radiologists with the same constraint. Given its speed and performance, the developed methodology could serve as a first step to develop methods that could be translated into a clinical setting.
format Online
Article
Text
id pubmed-9486565
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-94865652022-09-21 Detection of lesions in the optic nerve with magnetic resonance imaging using a 3D convolutional neural network Martí-Juan, Gerard Frías, Marcos Garcia-Vidal, Aran Vidal-Jordana, Angela Alberich, Manel Calderon, Willem Piella, Gemma Camara, Oscar Montalban, Xavier Sastre-Garriga, Jaume Rovira, Àlex Pareto, Deborah Neuroimage Clin Regular Article BACKGROUND: Optic neuritis (ON) is one of the first manifestations of multiple sclerosis, a disabling disease with rising prevalence. Detecting optic nerve lesions could be a relevant diagnostic marker in patients with multiple sclerosis. OBJECTIVES: We aim to create an automated, interpretable method for optic nerve lesion detection from MRI scans. MATERIALS AND METHODS: We present a 3D convolutional neural network (CNN) model that learns to detect optic nerve lesions based on T2-weighted fat-saturated MRI scans. We validated our system on two different datasets (N = 107 and 62) and interpreted the behaviour of the model using saliency maps. RESULTS: The model showed good performance (68.11% balanced accuracy) that generalizes to unseen data (64.11%). The developed network focuses its attention to the areas that correspond to lesions in the optic nerve. CONCLUSIONS: The method shows robustness and, when using only a single imaging sequence, its performance is not far from diagnosis by trained radiologists with the same constraint. Given its speed and performance, the developed methodology could serve as a first step to develop methods that could be translated into a clinical setting. Elsevier 2022-09-13 /pmc/articles/PMC9486565/ /pubmed/36126515 http://dx.doi.org/10.1016/j.nicl.2022.103187 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Regular Article
Martí-Juan, Gerard
Frías, Marcos
Garcia-Vidal, Aran
Vidal-Jordana, Angela
Alberich, Manel
Calderon, Willem
Piella, Gemma
Camara, Oscar
Montalban, Xavier
Sastre-Garriga, Jaume
Rovira, Àlex
Pareto, Deborah
Detection of lesions in the optic nerve with magnetic resonance imaging using a 3D convolutional neural network
title Detection of lesions in the optic nerve with magnetic resonance imaging using a 3D convolutional neural network
title_full Detection of lesions in the optic nerve with magnetic resonance imaging using a 3D convolutional neural network
title_fullStr Detection of lesions in the optic nerve with magnetic resonance imaging using a 3D convolutional neural network
title_full_unstemmed Detection of lesions in the optic nerve with magnetic resonance imaging using a 3D convolutional neural network
title_short Detection of lesions in the optic nerve with magnetic resonance imaging using a 3D convolutional neural network
title_sort detection of lesions in the optic nerve with magnetic resonance imaging using a 3d convolutional neural network
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486565/
https://www.ncbi.nlm.nih.gov/pubmed/36126515
http://dx.doi.org/10.1016/j.nicl.2022.103187
work_keys_str_mv AT martijuangerard detectionoflesionsintheopticnervewithmagneticresonanceimagingusinga3dconvolutionalneuralnetwork
AT friasmarcos detectionoflesionsintheopticnervewithmagneticresonanceimagingusinga3dconvolutionalneuralnetwork
AT garciavidalaran detectionoflesionsintheopticnervewithmagneticresonanceimagingusinga3dconvolutionalneuralnetwork
AT vidaljordanaangela detectionoflesionsintheopticnervewithmagneticresonanceimagingusinga3dconvolutionalneuralnetwork
AT alberichmanel detectionoflesionsintheopticnervewithmagneticresonanceimagingusinga3dconvolutionalneuralnetwork
AT calderonwillem detectionoflesionsintheopticnervewithmagneticresonanceimagingusinga3dconvolutionalneuralnetwork
AT piellagemma detectionoflesionsintheopticnervewithmagneticresonanceimagingusinga3dconvolutionalneuralnetwork
AT camaraoscar detectionoflesionsintheopticnervewithmagneticresonanceimagingusinga3dconvolutionalneuralnetwork
AT montalbanxavier detectionoflesionsintheopticnervewithmagneticresonanceimagingusinga3dconvolutionalneuralnetwork
AT sastregarrigajaume detectionoflesionsintheopticnervewithmagneticresonanceimagingusinga3dconvolutionalneuralnetwork
AT roviraalex detectionoflesionsintheopticnervewithmagneticresonanceimagingusinga3dconvolutionalneuralnetwork
AT paretodeborah detectionoflesionsintheopticnervewithmagneticresonanceimagingusinga3dconvolutionalneuralnetwork