Cargando…
Lesion segmentation in lung CT scans using unsupervised adversarial learning
Lesion segmentation in medical images is difficult yet crucial for proper diagnosis and treatment. Identifying lesions in medical images is costly and time-consuming and requires highly specialized knowledge. For this reason, supervised and semi-supervised learning techniques have been developed. Ne...
Autores principales: | Sherwani, Moiz Khan, Marzullo, Aldo, De Momi, Elena, Calimeri, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486778/ https://www.ncbi.nlm.nih.gov/pubmed/36125656 http://dx.doi.org/10.1007/s11517-022-02651-8 |
Ejemplares similares
-
Artificial intelligence for brain diseases: A systematic review
por: Segato, Alice, et al.
Publicado: (2020) -
An Open-Source COVID-19 CT Dataset with Automatic Lung Tissue Classification for Radiomics
por: Zaffino, Paolo, et al.
Publicado: (2021) -
Radiomics-Based Machine Learning Model for Predicting Overall and Progression-Free Survival in Rare Cancer: A Case Study for Primary CNS Lymphoma Patients
por: Destito, Michela, et al.
Publicado: (2023) -
Unsupervised segmentation and quantification of COVID-19 lesions on computed Tomography scans using CycleGAN
por: Connell, Marc, et al.
Publicado: (2022) -
Context-Unsupervised Adversarial Network for Video Sensors †
por: Canet Tarrés, Gemma, et al.
Publicado: (2022)