Cargando…

Chemoenzymatic Asymmetric Synthesis of Complex Heterocycles: Dihydrobenzoxazinones and Dihydroquinoxalinones

[Image: see text] Chiral dihydrobenzoxazinones and dihydroquinoxalinones serve as essential building blocks for pharmaceuticals and agrochemicals. Here, we report short chemoenzymatic synthesis routes for the facile preparation of these complex heterocycles in an optically pure form. These synthetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhat, Mohammad Faizan, Luján, Alejandro Prats, Saifuddin, Mohammad, Poelarends, Gerrit J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486952/
https://www.ncbi.nlm.nih.gov/pubmed/36158903
http://dx.doi.org/10.1021/acscatal.2c03008
Descripción
Sumario:[Image: see text] Chiral dihydrobenzoxazinones and dihydroquinoxalinones serve as essential building blocks for pharmaceuticals and agrochemicals. Here, we report short chemoenzymatic synthesis routes for the facile preparation of these complex heterocycles in an optically pure form. These synthetic routes involve a highly stereoselective hydroamination step catalyzed by ethylenediamine-N,N′-disuccinic acid lyase (EDDS lyase). This enzyme is capable of catalyzing the asymmetric addition of various substituted 2-aminophenols to fumarate to give a broad range of substituted N-(2-hydroxyphenyl)-l-aspartic acids with excellent enantiomeric excess (ee up to >99%). This biocatalytic hydroamination step was combined with an acid-catalyzed esterification–cyclization sequence to convert the enzymatically generated noncanonical amino acids into the desired dihydrobenzoxazinones in good overall yield (up to 63%) and high optical purity (ee up to >99%). By means of a similar one-pot, two-step chemoenzymatic approach, enantioenriched dihydroquinoxalinones (ee up to >99%) were prepared in good overall yield (up to 78%) using water as solvent for both steps. These chemoenzymatic methodologies offer attractive alternative routes to challenging dihydrobenzoxazinones and dihydroquinoxalinones, starting from simple and commercially available achiral building blocks.