Cargando…

Intestinal Microbiome Richness of Coral Reef Damselfishes (Actinopterygii: Pomacentridae)

Fish gastro-intestinal system harbors diverse microbiomes that affect the host's digestion, nutrition, and immunity. Despite the great taxonomic diversity of fish, little is understood about fish microbiome and the factors that determine its structure and composition. Damselfish are important c...

Descripción completa

Detalles Bibliográficos
Autores principales: Kavazos, Christopher R J, Ricci, Francesco, Leggat, William, Casey, Jordan M, Choat, J Howard, Ainsworth, Tracy D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486986/
https://www.ncbi.nlm.nih.gov/pubmed/36136736
http://dx.doi.org/10.1093/iob/obac026
_version_ 1784792396768215040
author Kavazos, Christopher R J
Ricci, Francesco
Leggat, William
Casey, Jordan M
Choat, J Howard
Ainsworth, Tracy D
author_facet Kavazos, Christopher R J
Ricci, Francesco
Leggat, William
Casey, Jordan M
Choat, J Howard
Ainsworth, Tracy D
author_sort Kavazos, Christopher R J
collection PubMed
description Fish gastro-intestinal system harbors diverse microbiomes that affect the host's digestion, nutrition, and immunity. Despite the great taxonomic diversity of fish, little is understood about fish microbiome and the factors that determine its structure and composition. Damselfish are important coral reef species that play pivotal roles in determining algae and coral population structures of reefs. Broadly, damselfish belong to either of two trophic guilds based on whether they are planktivorous or algae-farming. In this study, we used 16S rRNA gene sequencing to investigate the intestinal microbiome of 5 planktivorous and 5 algae-farming damselfish species (Pomacentridae) from the Great Barrier Reef. We detected Gammaproteobacteria ASVs belonging to the genus Actinobacillus in 80% of sampled individuals across the 2 trophic guilds, thus, bacteria in this genus can be considered possible core members of pomacentrid microbiomes. Algae-farming damselfish had greater bacterial alpha-diversity, a more diverse core microbiome and shared 35 ± 22 ASVs, whereas planktivorous species shared 7 ± 3 ASVs. Our data also highlight differences in microbiomes associated with both trophic guilds. For instance, algae-farming damselfish were enriched in Pasteurellaceae, whilst planktivorous damselfish in Vibrionaceae. Finally, we show shifts in bacterial community composition along the intestines. ASVs associated with the classes Bacteroidia, Clostridia, and Mollicutes bacteria were predominant in the anterior intestinal regions while Gammaproteobacteria abundance was higher in the stomach. Our results suggest that the richness of the intestinal bacterial communities of damselfish reflects host species diet and trophic guild.
format Online
Article
Text
id pubmed-9486986
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-94869862022-09-20 Intestinal Microbiome Richness of Coral Reef Damselfishes (Actinopterygii: Pomacentridae) Kavazos, Christopher R J Ricci, Francesco Leggat, William Casey, Jordan M Choat, J Howard Ainsworth, Tracy D Integr Org Biol Article Fish gastro-intestinal system harbors diverse microbiomes that affect the host's digestion, nutrition, and immunity. Despite the great taxonomic diversity of fish, little is understood about fish microbiome and the factors that determine its structure and composition. Damselfish are important coral reef species that play pivotal roles in determining algae and coral population structures of reefs. Broadly, damselfish belong to either of two trophic guilds based on whether they are planktivorous or algae-farming. In this study, we used 16S rRNA gene sequencing to investigate the intestinal microbiome of 5 planktivorous and 5 algae-farming damselfish species (Pomacentridae) from the Great Barrier Reef. We detected Gammaproteobacteria ASVs belonging to the genus Actinobacillus in 80% of sampled individuals across the 2 trophic guilds, thus, bacteria in this genus can be considered possible core members of pomacentrid microbiomes. Algae-farming damselfish had greater bacterial alpha-diversity, a more diverse core microbiome and shared 35 ± 22 ASVs, whereas planktivorous species shared 7 ± 3 ASVs. Our data also highlight differences in microbiomes associated with both trophic guilds. For instance, algae-farming damselfish were enriched in Pasteurellaceae, whilst planktivorous damselfish in Vibrionaceae. Finally, we show shifts in bacterial community composition along the intestines. ASVs associated with the classes Bacteroidia, Clostridia, and Mollicutes bacteria were predominant in the anterior intestinal regions while Gammaproteobacteria abundance was higher in the stomach. Our results suggest that the richness of the intestinal bacterial communities of damselfish reflects host species diet and trophic guild. Oxford University Press 2022-09-16 /pmc/articles/PMC9486986/ /pubmed/36136736 http://dx.doi.org/10.1093/iob/obac026 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Article
Kavazos, Christopher R J
Ricci, Francesco
Leggat, William
Casey, Jordan M
Choat, J Howard
Ainsworth, Tracy D
Intestinal Microbiome Richness of Coral Reef Damselfishes (Actinopterygii: Pomacentridae)
title Intestinal Microbiome Richness of Coral Reef Damselfishes (Actinopterygii: Pomacentridae)
title_full Intestinal Microbiome Richness of Coral Reef Damselfishes (Actinopterygii: Pomacentridae)
title_fullStr Intestinal Microbiome Richness of Coral Reef Damselfishes (Actinopterygii: Pomacentridae)
title_full_unstemmed Intestinal Microbiome Richness of Coral Reef Damselfishes (Actinopterygii: Pomacentridae)
title_short Intestinal Microbiome Richness of Coral Reef Damselfishes (Actinopterygii: Pomacentridae)
title_sort intestinal microbiome richness of coral reef damselfishes (actinopterygii: pomacentridae)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486986/
https://www.ncbi.nlm.nih.gov/pubmed/36136736
http://dx.doi.org/10.1093/iob/obac026
work_keys_str_mv AT kavazoschristopherrj intestinalmicrobiomerichnessofcoralreefdamselfishesactinopterygiipomacentridae
AT riccifrancesco intestinalmicrobiomerichnessofcoralreefdamselfishesactinopterygiipomacentridae
AT leggatwilliam intestinalmicrobiomerichnessofcoralreefdamselfishesactinopterygiipomacentridae
AT caseyjordanm intestinalmicrobiomerichnessofcoralreefdamselfishesactinopterygiipomacentridae
AT choatjhoward intestinalmicrobiomerichnessofcoralreefdamselfishesactinopterygiipomacentridae
AT ainsworthtracyd intestinalmicrobiomerichnessofcoralreefdamselfishesactinopterygiipomacentridae