Cargando…
Performance analysis of remote photoplethysmography deep filtering using long short-term memory neural network
BACKGROUND: Remote photoplethysmography (rPPG) is a technique developed to estimate heart rate using standard video cameras and ambient light. Due to the multiple sources of noise that deteriorate the quality of the signal, conventional filters such as the bandpass and wavelet-based filters are comm...
Autores principales: | Botina-Monsalve, Deivid, Benezeth, Yannick, Miteran, Johel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487135/ https://www.ncbi.nlm.nih.gov/pubmed/36123747 http://dx.doi.org/10.1186/s12938-022-01037-z |
Ejemplares similares
-
Remote photoplethysmography with constrained ICA using periodicity and chrominance constraints
por: Macwan, Richard, et al.
Publicado: (2018) -
Evaluation of biases in remote photoplethysmography methods
por: Dasari, Ananyananda, et al.
Publicado: (2021) -
Normalization of photoplethysmography using deep neural networks for individual and group comparison
por: Kim, Ji Woon, et al.
Publicado: (2022) -
Association of remote imaging photoplethysmography and cutaneous perfusion in volunteers
por: Rasche, Stefan, et al.
Publicado: (2020) -
pyVHR: a Python framework for remote photoplethysmography
por: Boccignone, Giuseppe, et al.
Publicado: (2022)