Cargando…
An ensemble learning with active sampling to predict the prognosis of postoperative non-small cell lung cancer patients
BACKGROUND: Lung cancer is the leading cause of cancer death worldwide. Prognostic prediction plays a vital role in the decision-making process for postoperative non-small cell lung cancer (NSCLC) patients. However, the high imbalance ratio of prognostic data limits the development of effective prog...
Autores principales: | Hu, Danqing, Zhang, Huanyao, Li, Shaolei, Duan, Huilong, Wu, Nan, Lu, Xudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487160/ https://www.ncbi.nlm.nih.gov/pubmed/36123745 http://dx.doi.org/10.1186/s12911-022-01960-0 |
Ejemplares similares
-
A novel deep learning approach to extract Chinese clinical entities for lung cancer screening and staging
por: Zhang, Huanyao, et al.
Publicado: (2021) -
Using Natural Language Processing and Machine Learning to Preoperatively Predict Lymph Node Metastasis for Non–Small Cell Lung Cancer With Electronic Medical Records: Development and Validation Study
por: Hu, Danqing, et al.
Publicado: (2022) -
Automatic Extraction of Lung Cancer Staging Information From Computed Tomography Reports: Deep Learning Approach
por: Hu, Danqing, et al.
Publicado: (2021) -
Evidential MACE prediction of acute coronary syndrome using electronic health records
por: Hu, Danqing, et al.
Publicado: (2019) -
Automatic RadLex coding of Chinese structured radiology reports based on text similarity ensemble
por: Chen, Yani, et al.
Publicado: (2021)