Cargando…
Self-supervised contrastive learning for integrative single cell RNA-seq data analysis
We present a novel self-supervised Contrastive LEArning framework for single-cell ribonucleic acid (RNA)-sequencing (CLEAR) data representation and the downstream analysis. Compared with current methods, CLEAR overcomes the heterogeneity of the experimental data with a specifically designed represen...
Autores principales: | Han, Wenkai, Cheng, Yuqi, Chen, Jiayang, Zhong, Huawen, Hu, Zhihang, Chen, Siyuan, Zong, Licheng, Hong, Liang, Chan, Ting-Fung, King, Irwin, Gao, Xin, Li, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487595/ https://www.ncbi.nlm.nih.gov/pubmed/36089561 http://dx.doi.org/10.1093/bib/bbac377 |
Ejemplares similares
-
Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations
por: Lei, Tianyuan, et al.
Publicado: (2023) -
CAFU: a Galaxy framework for exploring unmapped RNA-Seq data
por: Chen, Siyuan, et al.
Publicado: (2019) -
scDeepInsight: a supervised cell-type identification method for scRNA-seq data with deep learning
por: Jia, Shangru, et al.
Publicado: (2023) -
SMG: self-supervised masked graph learning for cancer gene identification
por: Cui, Yan, et al.
Publicado: (2023) -
Consensus clustering of single-cell RNA-seq data by enhancing network affinity
por: Cui, Yaxuan, et al.
Publicado: (2021)