Cargando…
Comparative studies of AlphaFold, RoseTTAFold and Modeller: a case study involving the use of G-protein-coupled receptors
Neural network (NN)-based protein modeling methods have improved significantly in recent years. Although the overall accuracy of the two non-homology-based modeling methods, AlphaFold and RoseTTAFold, is outstanding, their performance for specific protein families has remained unexamined. G-protein-...
Autores principales: | Lee, Chien, Su, Bo-Han, Tseng, Yufeng Jane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487610/ https://www.ncbi.nlm.nih.gov/pubmed/35945035 http://dx.doi.org/10.1093/bib/bbac308 |
Ejemplares similares
-
Obtaining protein foldability information from computational models of AlphaFold2 and RoseTTAFold
por: Liu, Sen, et al.
Publicado: (2022) -
AlphaFold2 and RoseTTAFold predict posttranslational modifications. Chromophore formation in GFP-like proteins
por: Hartley, Sophia M., et al.
Publicado: (2022) -
Crystal structure of a polyglycine hydrolase determined using a RoseTTAFold model
por: Dowling, Nicole V., et al.
Publicado: (2023) -
Zero‐shot mutation effect prediction on protein stability and function using RoseTTAFold
por: Mansoor, Sanaa, et al.
Publicado: (2023) -
A general optimization protocol for molecular property prediction using a deep learning network
por: Chen, Jen-Hao, et al.
Publicado: (2021)