Cargando…

Pulmonary alveolar microlithiasis: review of the 1022 cases reported worldwide

Pulmonary alveolar microlithiasis (PAM) is a rare disease characterised by the widespread intra-alveolar accumulation of minute calculi called microliths. It is caused by mutation of the SLC34A2 gene encoding the type IIb sodium phosphate cotransporter in alveolar type II cells. The present study ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Castellana, Giuseppe, Castellana, Giorgio, Gentile, Mattia, Castellana, Roberto, Resta, Onofrio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: European Respiratory Society 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487614/
https://www.ncbi.nlm.nih.gov/pubmed/26621975
http://dx.doi.org/10.1183/16000617.0036-2015
Descripción
Sumario:Pulmonary alveolar microlithiasis (PAM) is a rare disease characterised by the widespread intra-alveolar accumulation of minute calculi called microliths. It is caused by mutation of the SLC34A2 gene encoding the type IIb sodium phosphate cotransporter in alveolar type II cells. The present study explores the epidemiological, familial, genetic, clinical, diagnostic, radiological and therapeutic aspects with the aim of contributing to a better understanding of this uncommon disease. We searched articles on PAM published up to December 2014 and 544 papers were found, accounting for 1022 cases. PAM is present in all continents and in many nations, in particular in Turkey, China, Japan, India, Italy and the USA. Familiality is frequent. The clinical course is not uniform and the causes of this clinical variability seem to be largely nongenetic. The optimal diagnostic procedure is the association of chest high-resolution computed tomography (HRCT) with bronchoalveolar lavage, but a chest radiograph may suffice in families in which a case has already been diagnosed. Moreover, chest radiography and HRCT allow the classification of the evolutionary phase of the disease and its severity. At present lung transplantation is the only effective therapy. However, better knowledge of the gene responsible offers hope for new therapies.