Cargando…
A Markov random field model-based approach for differentially expressed gene detection from single-cell RNA-seq data
The development of single-cell RNA-sequencing (scRNA-seq) technologies has offered insights into complex biological systems at the single-cell resolution. In particular, these techniques facilitate the identifications of genes showing cell-type-specific differential expressions (DE). In this paper,...
Autores principales: | Zhu, Biqing, Li, Hongyu, Zhang, Le, Chandra, Sreeganga S, Zhao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487630/ https://www.ncbi.nlm.nih.gov/pubmed/35514182 http://dx.doi.org/10.1093/bib/bbac166 |
Ejemplares similares
-
Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data
por: Junttila, Sini, et al.
Publicado: (2022) -
Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations
por: Lei, Tianyuan, et al.
Publicado: (2023) -
Quantum annealing-based clustering of single cell RNA-seq data
por: Kubacki, Michal, et al.
Publicado: (2023) -
Consensus clustering of single-cell RNA-seq data by enhancing network affinity
por: Cui, Yaxuan, et al.
Publicado: (2021) -
Self-supervised contrastive learning for integrative single cell RNA-seq data analysis
por: Han, Wenkai, et al.
Publicado: (2022)