Cargando…
CHERRY: a Computational metHod for accuratE pRediction of virus–pRokarYotic interactions using a graph encoder–decoder model
Prokaryotic viruses, which infect bacteria and archaea, are key players in microbial communities. Predicting the hosts of prokaryotic viruses helps decipher the dynamic relationship between microbes. Experimental methods for host prediction cannot keep pace with the fast accumulation of sequenced ph...
Autores principales: | Shang, Jiayu, Sun, Yanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487644/ https://www.ncbi.nlm.nih.gov/pubmed/35595715 http://dx.doi.org/10.1093/bib/bbac182 |
Ejemplares similares
-
RdRp-based sensitive taxonomic classification of RNA viruses for metagenomic data
por: Tang, Xubo, et al.
Publicado: (2022) -
PhaTYP: predicting the lifestyle for bacteriophages using BERT
por: Shang, Jiayu, et al.
Publicado: (2022) -
Accurate identification of bacteriophages from metagenomic data using Transformer
por: Shang, Jiayu, et al.
Publicado: (2022) -
STALLION: a stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction
por: Basith, Shaherin, et al.
Publicado: (2021) -
A new approach to decode DNA methylome and genomic variants simultaneously from double strand bisulfite sequencing
por: Liang, Jialong, et al.
Publicado: (2021)