Cargando…
CellDrift: inferring perturbation responses in temporally sampled single-cell data
Cells and tissues respond to perturbations in multiple ways that can be sensitively reflected in the alterations of gene expression. Current approaches to finding and quantifying the effects of perturbations on cell-level responses over time disregard the temporal consistency of identifiable gene pr...
Autores principales: | Jin, Kang, Schnell, Daniel, Li, Guangyuan, Salomonis, Nathan, Prasath, V B Surya, Szczesniak, Rhonda, Aronow, Bruce J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487655/ https://www.ncbi.nlm.nih.gov/pubmed/35998893 http://dx.doi.org/10.1093/bib/bbac324 |
Ejemplares similares
-
DeepImmuno: deep learning-empowered prediction and generation of immunogenic peptides for T-cell immunity
por: Li, Guangyuan, et al.
Publicado: (2021) -
FitDevo: accurate inference of single-cell developmental potential using sample-specific gene weight
por: Zhang, Feng, et al.
Publicado: (2022) -
Sample-specific perturbation of gene interactions identifies breast cancer subtypes
por: Chen, Yuanyuan, et al.
Publicado: (2020) -
InferLoop: leveraging single-cell chromatin accessibility for the signal of chromatin loop
por: Zhang, Feng, et al.
Publicado: (2023) -
SWEET: a single-sample network inference method for deciphering individual features in disease
por: Chen, Hsin-Hua, et al.
Publicado: (2023)